El-450 User Manual

El-450 Series
 220V Class 1HP~7½ HP 440 V Class 1HP~10 HP

Read this manual carefully before installing, wiring, operating, servicing or inspecting the drive. Keep this manual within easy reach for quick reference.

Thank you for purchasing Eric-450 Variable Speed Drives!

SAFETY INSTRUCTIONS

- Always follow safety instructions to prevent accidents and potential hazards from occurring.
- In this manual, safety messages are classified as follows:

WARNING Improper operation may result in serious personal injury or death.

! CAUTION
 Improper operation may result in slight to medium personal injury or property damage.

- Throughout this manual we use the following two illustrations to make you aware of safety considerations:

Identifies potential hazards under certain conditions.
Read the message and follow the instructions carefully.

Identifies shock hazards under certain conditions.
Particular attention should be directed because dangerous voltage may be present.

- Keep operating instructions handy for quick reference.
- Read this manual carefully to maximize the performance of EI-450 series inverter and ensure its safe use.

WARNING

- Do not remove the cover while power is applied or the unit is in operation.

Otherwise, electric shock could occur.

- Do not run the inverter with the front cover removed.

Otherwise, you may get an electric shock due to high voltage terminals or charged capacitor exposure.

- Do not remove the cover except for periodic inspections or wiring, even if the input power is not applied.
Otherwise, you may access the charged circuits and get an electric shock.
- Wiring and periodic inspections should be performed at least 10 minutes after disconnecting the input power and after checking the DC link voltage is discharged with a meter (below DC 30V).
Otherwise, you may get an electric shock.
- Operate the switches with dry hands.

Otherwise, you may get an electric shock.

- Do not use the cable when its insulating tube is damaged.

Otherwise, you may get an electric shock.

- Do not subject the cables to scratches, excessive stress, heavy loads or pinching. Otherwise, you may get an electric shock.

CAUTION

- Install the inverter on a non-flammable surface. Do not place flammable material nearby.
Otherwise, fire could occur.
- Disconnect the input power if the inverter gets damaged.

Otherwise, it could result in a secondary accident and fire.

- After the input power is applied or removed, the inverter will remain hot for a couple of minutes.
Otherwise, you may get bodily injuries such as skin-burn or damage.
- Do not apply power to a damaged inverter or to an inverter with parts missing even if the installation is complete.
Otherwise, electric shock could occur.
■ Do not allow lint, paper, wood chips, dust, metallic chips or other foreign matter into the drive.
Otherwise, fire or accident could occur.

OPERATING PRECAUTIONS

(1) Handling and installationHandle according to the weight of the product.Do not stack the inverter boxes higher than the number recommended.Install according to instructions specified in this manual.Do not open the cover during delivery.Do not place heavy items on the inverter.Check the inverter mounting orientation is correct.Do not drop the inverter, or subject it to impact.Use the Type 3 grounding method for 220 V class and special Type 3 for 440 V class. (Ground impedance: Below 100 ohm).
\square Take protective measures against ESD (Electrostatic Discharge) before touching the PCB for inspection or installation.
\square Use the inverter under the following environmental conditions:

	Ambient temperature	$\mathbf{- 1 0} \sim \mathbf{+ 5 0}{ }^{\circ} \mathrm{C} \quad$ (non-freezing)
	Relative humidity	$\mathbf{9 0 \%}$ RH or less (non-condensing)
	Storage temperature	$\mathbf{- 2 0} \sim+\mathbf{+ 6 0}{ }^{\circ} \mathrm{C}$
	Location	Protected from corrosive gas, combustible gas, oil mist or dust
	Altitude, Vibration	Max. $1,000 \mathrm{~m}$ above sea level, Max. $9.8 \mathrm{~m} / \sec ^{2}(1.0 \mathrm{G})$ or less

(2) Wiring
\square Do not connect a power factor correction capacitor, surge suppressor, or RFI filter to the output of the inverter.
\square The connection orientation of the output cables $\mathrm{U}, \mathrm{V}, \mathrm{W}$ to the motor will affect the direction of rotation of the motor.
\square Incorrect terminal wiring could result in the equipment damage.Reversing the polarity (+/-) of the terminals could damage the inverter.Only authorized personnel familiar with RICH ELECTRIC inverter should perform wiring and inspections.
\square Always install the inverter before wiring. Otherwise, you may get an electric shock or have bodily injury.
(3) Test run
\square Check all constants during operation. Changing constant values might be required depending on the load.
\square Always apply permissible range of voltage to the each terminal as indicated in this manual. Otherwise, it could lead to inverter damage.
(4) Operation precautionsWhen the Auto restart function is selected, stay away from the equipment as a motor will restart suddenly after an alarm stop.
\square The "Stop" key on the keypad is valid only when the appropriate function setting has been made. Prepare an emergency stop switch separately.If an alarm reset is made with the reference signal present, a sudden start will occur. Check that the reference signal is turned off in advance. Otherwise an accident could occur.
\square Do not modify or alter anything inside the inverter.Motor might not be protected by electronic thermal function of inverter.Do not use a magnetic contactor on the inverter input for frequent starting/stopping of the inverter.
\square Use a noise filter to reduce the effect of electromagnetic interference. Otherwise nearby electronic equipment may be affected.In case of input voltage unbalance, install AC reactor. Power factor capacitors and generators may become overheated and damaged due to potential high frequency noise transmitted from inverter.
\square Use an insulation-rectified motor or take measures to suppress the micro surge voltage when driving 440 V class motor with inverter. A micro surge voltage attributable to wiring constant is generated at motor terminals, and may deteriorate insulation and damage motor.
\square Before operating unit and prior to user programming, reset user constants to default settings.
\square Inverter can easily be set to high-speed operations, verify capability of motor or machinery prior to operating unit.
\square Stopping torque is not produced when using the DC-Break function. Install separate equipment when stopping torque is needed.
(5) Fault prevention precautionsProvide a safety backup such as an emergency brake which will prevent the machine and equipment from hazardous conditions if the inverter fails.
(6) Maintenance, inspection and parts replacementDo not conduct a megger (insulation resistance) test on the control circuit of the inverter.
\square Refer to Chapter 5 for periodic inspection (parts replacement).
(7) Disposal
\square Handle the inverter as an industrial waste when disposing of it.
(8) General instructions
\square Many of the diagrams and drawings in this instruction manual show the inverter without a circuit breaker, a cover or partially open. Never run the inverter like this. Always place the cover with circuit breakers and follow this instruction manual when operating the inverter.

CONTENTS

USER GUIDE 2
CHAPTER 1 INSTALLATION 9
\square Inspection 9
Environmental Conditions 9

- Mounting 9
Other Precautions 10
Dimension 11
- Standard Wiring 14
- Terminal Description 15
Precautions on Wiring 16
Grounding 16
Wiring and Terminal Screw Sizes 18
Power and Motor Connection 18
Control Terminals 19
CHAPTER 2 TEST RUN 22
Test Run 22
Simple Operator (RCUS-450) User Instruction 24
- Digital Operator (RCU-450/RCU-450P) User Instruction 26
LED Display and User Instruction of Digital Operator RCU-450 28
\square Simple Run Setting 33
CHAPTER 3 CONSTANTS LIST 34
\square Constants List (Constants F01-F79) 34~42
Initial Settings That Change with The Inverter Capacity 42
CHAPTER 4 PROGRAMMING FEATURES 43
Constants F01-F79 43~85
CHAPTER 5 MAINTENANCE AND INSPECTION 86
- Periodical Inspection 86
- Part Replacement 86
CHAPTER 6 FAULT DIAGNOSIS 87
Protective and Diagnostic Functions 87
Alarm Display 87
Fault Display 91
APPENDIX-Recommended Peripheral Devices 96

Standard Specification

	Voltage Class	220 V class single-phase					220Vclass 3-phase					440 V class 3-phase					
	Model EI-450-	P2L	P4L	S1L	S2L	S3L	01L	02L	03L	05L	07L	01H	02H	03H	05H	07H	10H
Max.	Application Motor Output (HP)	1/4	1/2	1	2	3	1	2	3	5	7.5	1	2	3	5	7.5	10
	Rated Output Current (A)	1.6	3	5	8	11	5	8	11	18	25	2.5	4	6	8	15	18
	Max. Output Voltage (V)	3-phase 200~230V (Proportional to input voltage)					3-phase 200~230V (Proportional to input voltage)					3-phase 380~460V (Proportional to input voltage)					
	Max. Output Frequency (Hz)	400 Hz (Programmable)															
	Rated Input Voltage and Frequency	$\begin{gathered} \text { Single-phase } \\ 200 \sim 230 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$					$\begin{aligned} & \text { 3-phase } \\ & 200 \sim 230 \mathrm{~V} \\ & 50 / 60 \mathrm{~Hz} \\ & \hline \end{aligned}$					$\begin{gathered} \text { 3-phase } \\ 380 \sim 460 \mathrm{~V} \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$					
	Allowable Voltage Fluctuation	$-15 \sim+10 \%$															
	Allowable Frequency Fluctuation	$\pm 5 \%$															
$\begin{aligned} & \mathscr{U} \\ & \text { UZ } \\ & \text { O} \\ & \text { L } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Control Method	Sine wave PWM (V/F control)															
	Frequency Control Range	$0.1 \sim 400 \mathrm{~Hz}$															
	Frequency Accuracy (Temperature Change)	$\begin{aligned} & \text { Digital reference }: \pm 0.01 \%\left(-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}\right) \\ & \text { Analog reference }: \pm 0.5 \%\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right) \end{aligned}$															
	Frequency Setting Resolution	Digital reference: 0.1 Hz (less than 100 Hz$), 1 \mathrm{~Hz}(100 \mathrm{~Hz}$ or more) Analog reference: $1 / 1000$ of max. output frequency															
	Output Frequency Resolution	0.01 Hz															
	Overload Capacity	150% rated output current for one minute															
	Frequency Reference Signal	$\begin{gathered} \mathrm{DC} 0 \sim+10 \mathrm{~V}(20 \mathrm{~K} \Omega), 4 \sim 20 \mathrm{~mA}(250 \Omega), 0 \sim 20 \mathrm{~mA}(250 \Omega) \\ \text { Frequency setting potentiometer }(\text { Selectable }) \\ \hline \end{gathered}$															
	Accel/Decel Time	$0.0 \sim 999 \mathrm{sec}$. (2 accel/decal time are independently programmed)															
	Braking Torque	Short-term average deceleration torque $1 \mathrm{HP}: 100 \%$ or more, $2 \mathrm{HP}: 50 \%$ or more, $3 \mathrm{HP}: 20 \%$ or more Continuous regenerative torque: Approx. 20\% (150% with optional braking resistor, braking transistor built-in)															
	V/F Characteristics	Possible to program any V/F pattern															
0000000000	Motor Overload Protection	Electronic thermal overload relay															
	Instantaneous Overcurrent	Motor coasts to a stop at approx. 200% of inverter rated current															
	Overload	Motor coasts to a stop after 1 minute at 150% of inverter rated output current															
	Overvoltage	Motor coasts to a stop if DC bus voltage exceeds 410 V (220VClass) Motor coasts to a stop if DC bus voltage exceeds 820 V (440VClass)															
	Undervoltage	Motor coasts to a stop if DC bus voltage is less than 200 V (220VClass) Motor coasts to a stop if DC bus voltage is less than 400 V (440 V Class)															
	Momentary Power Loss	Following items are selectable: Stops if power loss is 15 ms or longer Continuous operation if power loss is approx. 0.5 s or shorter															
	Cooling Fin Overheat	Protected by electronic circuit															
	Stall prevention level	Can be set individual level during accel/decel, provided/not provided available during coast to a stop															
	Cooling Fan Fault	Protected by electronic circuit (fan lock detection)															
	Ground Fault	Protected by electronic circuit (overcurrent level)															
	Power Charge Indication	ON until the DC bus voltage becomes 50 V or less															

	Multi-function input	Four of the following input signals are selectable: Forward/reverse run (3-wire sequence), external fault, fault reset, 8 -step speed operation , jog command, accel/decel time select, external baseblock, speed search command, accel/decel hold command, LOCAL/REMOTE selection, communication/control circuit terminal selection, emergency stop fault, emergency stop alarm UP/DOWN command, self-test.
	Multi-function output	Following ouput signals (IC contact) are selectable: Fault, running, zero speed, at frequency, frequency detection (output frequency \leqq or \geqq set value), during undervoltage detection, minor error, during baseblock, operation mode, inverter run ready, during fault retry, during UV, during speed search, data output through communication.
	Standard Function	Full-range automatic torque boost, slip compensation, DC injection braking current/time at start/stop, frequency reference bias/gain, MODBUS communications (RS-485/422, max. 19.2KBPS), constants copy, frequency reference with built-in potentiometer for input frequency reference.
	Digital Operator	RCUS-450 Simple operator : Available to set frequency reference, operating run/stop function (Standard). RCU-450 Digital operator : Available to monitor frequency reference, output frequency, output current, modify constants and operating run/stop function (Optional). RCU-450P Digital operator : Available to monitor and set the frequency reference, output frequency and modify constants, constants COPY, and operating run/stop function (Optional).
	Terminals	Main circuit: screw terminals Control circuit: plug-in screw terminal
	Wiring Distance between Inverter and Motor	100 M or less
Enclosure		IP20
Cooling Method		Forced air cooling
	Ambient Temperature	Open chassis $-10^{\circ} \mathrm{C} \sim+50^{\circ} \mathrm{C}$
	Humidity	$90 \% \mathrm{RH}$ or less (non-condensing)
	Storage Temperature*1	$-20^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$
	Location	Indoor (free from corrosive gases or dust)
	Elevation	1000 M or less
	Vibration	Up to $9.8 \mathrm{~m} / \mathrm{S}^{2}(1 \mathrm{G})$ at $10 \sim 20 \mathrm{~Hz}$ Up to $2 \mathrm{~m} / \mathrm{S}^{2}(0.2 \mathrm{G})$ at $20 \sim 50 \mathrm{~Hz}$

*1 Storage Temperature during shipping (for short period).

CHAPTER 1 INSTALLATION

Inspection

Inspect the inverter for any damage that may have occurred during shipping.
Check the nameplate on the EI-450 inverter. Verify the inverter unit is the correct one for the application. The numbering system of the inverter is as shown below.

\square Environmental Conditions

Verify the ambient condition for the mounting location.
-Ambient temperature should not be below $-10^{\circ} \mathrm{C}$ or exceed $50^{\circ} \mathrm{C}$.
-Relative humidity should be less than 90% (non-condensing).
-Altitude should be below $3,300 \mathrm{ft}(1,000 \mathrm{~m})$.
Do not mount the inverter in direct sunlight and isolate it from excessive vibration.

- Mounting

\square The inverter must be mounted vertically with sufficient horizontal and vertical space between adjacent equipment (A=Over 6" $(150 \mathrm{~mm}), \mathrm{B}=$ Over 2 " $(50 \mathrm{~mm})$).

Other Precautions

Do not carry the inverter by the front cover.Do not install the inverter in a location where excessive vibration is present. Be cautious when installing on presses or moving equipment.The life span of the inverter is greatly affected by the ambient temperature. Install in a location where temperature are within permissible limits $\left(-10 \sim+50^{\circ} \mathrm{C}\right)$.The inverter operates at high-temperatures - install on a non-combustible surface.Do not install the inverter in high-temperature or high-humidity locations.
Do not install the inverter in a location where oil mist, combustible gas, or dust is present. Install the inverter in a clean location or in an enclosed panel, free of foreign substance.

When installing the inverter inside a panel with multiple inverters or a ventilation fan, use caution.
If installed incorrectly, the ambient temperature may exceed specified limits.

[When installing several inverters in a panel]

[When installing a ventilating fan in a panel]

Install the inverter using screws or bolts to insure the inverter is firmly fastened.

Dimension

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Dimension in mm/Mass in $\mathbf{k g}$

Voltage Class	Capacity (HP)	W	H	D	W1	H1	H2	Mass	Fig.
220 V single-Phase	1HP	98	130	131	88	117	7	0.9	1
	2HP	129	130	153	117	118	6	1.5	2
	3HP	150	130	155	137	117	7	1.8	3
$\begin{gathered} 220 \mathrm{~V} \\ \text { 3-Phase } \end{gathered}$	1HP	98	130	131	88	117	7	0.9	1
	2HP	129	130	153	117	118	6	1.5	2
	3HP	150	130	155	137	117	7	1.8	3
	5HP								
	7.5HP	187	198	186	175	186	5	5.0	4
$\begin{gathered} \text { 440V } \\ \text { 3-Phase } \end{gathered}$	1HP	98	130	131	88	117	7	0.9	1
	2HP	129	130	153	117	118	6	1.5	2
	3HP	150	130	155	137	117	7	1.8	3
	5HP								
	7.5HP	187	198	186	175	186	5	5.0	4

Standard Wiring

- Terminal Description

Symbols	Functions
$\mathrm{R} / \mathrm{L} 1$	AC line input terminals
$\mathrm{S} / \mathrm{L} 2$	3(1) phase, 200 $\sim 230 \mathrm{~V}$ AC for 220V class units and $380 \sim 460 \mathrm{~V}$ AC for 440 V class units.
$\mathrm{T} / \mathrm{L} 3$	3-Phase output terminals to motor
$\mathrm{U} / \mathrm{T} 1$	
$\mathrm{~V} / \mathrm{T} 2$	Dynamic braking resistor connection terminals
$\mathrm{W} / \mathrm{T} 3$	
P	DR

! WARNING

Normal stray capacitance between the inverter chassis and the power devices inside the inverter and AC line can provide a high impedance shock hazard. Do not apply power to the inverter if the inverter frame is not grounded.

- Precautions on Wiring

The internal circuits of the inverter will be damaged if the incoming power is connected and applied to output terminals (U, V, W).Use ring terminals with insulated caps when wiring the input power and motor wiring.Do not leave wire fragments inside the inverter. Wire fragments can cause faults, breakdowns, and malfunctions.For input and output, use wires with sufficient size to ensure voltage drop of less than 2%. Motor torque may drop if operating at low frequencies and a long wire run between inverter and motor.
\square When more than one motor is connected to one inverter, total wiring length should be less than 100 m . Do not use a 3 -wire cable for long distances. Due to increased leakage capacitance between wires, over-current protective feature may operate or equipment connected to the output side may malfunction.
\square Please reduce the constants of F46 Carrier frequency to prevent the current leakage when the wiring between the inverter and the motor is longer.
$\square \quad$ Connect only recommended braking resistor between the P and PR terminals. Never short P and PR terminals. Shorting terminals may cause internal damage to inverter.
\square The main circuit of the inverter contains high frequency noise, and can hinder communication equipment near the inverter. To reduce noise, install RFI filters or line noise filters on the input side of the inverter.
\square Do not use power factor capacitor, surge suppressors, or RFI filters on the output side of the inverter. Doing so may damage these components.
\square Always insure the CHARGE LED lamp for the power terminal are OFF before wiring terminals. The charge capacitor may hold high-voltage even after the power is disconnected. Use caution to prevent the possibility of personal injury.
\square Grounding
\square The inverter is a high switching device, and leakage current may flow. Ground the inverter to avoid electrical shock. Use caution to prevent the possibility of personal injury.
\square Connect only to the dedicated ground terminal on the inverter. Do not use the enclosure or a chassis screw for grounding.
\square Grounding wiring should be as thick as possible. Grounding wire should be as short as possible and should be connected to the ground point as near as possible to the inverter.
\square The correct grounding is essential when using the inverter. 220 V class: less than $100 \Omega .440 \mathrm{~V}$ class: less than 10Ω.
\square The grounding of the inverter should be separate from the grounding of welder.
\square Please refer to the below grounding method when there are multiple inverters used.

Motor Capacity	Grounding Wire Sizes, AWG (mm ${ }^{2}$)		
	220V class	440V class	
1.0	\sim	5.0	HP
7.5	$\sim 12(3.5)$	$14 \quad(2)$	

Wiring and Terminal Screw Sizes

Refer to the following table for wires and terminal specification of the inverter power input (R/L1, S/L2, T/L3) and output (U/T1, V/T2, W/T3).

Inverter Capacity		Terminal Screw Size	Screw Torque ${ }^{1}$ (Kgf.cm)/ lb-in	Terminals				Wire ${ }^{2}$						
		mm^{2}						AWG						
		$\begin{aligned} & \hline \text { R/L1 } \\ & \text { S/L2 } \\ & \text { T/L3 } \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{U} / \mathrm{T} 1 \\ & \mathrm{~V} / \mathrm{T} 2 \\ & \mathrm{~W} / \mathrm{T} 3 \\ & \hline \end{aligned}$		R/L1	U/T1	R/L1	U/T1					
		S/L2				V/T2	S/L2	V/T2						
		T/L3				W/T3	T/L3	W/T3						
220V Class (Single-Phase)	$1 \sim 3 \mathrm{HP}$				M 4.0	15/ 10	2	- 4		4	2	2	14	14
220V Class (3-Phase)	1 HP			M 3.5	10/ 7	2	- 3.5	2		2	2	14	14	
	$2 \sim 3 \mathrm{HP}$	M 4.0	15/10	2	- 4	2	4	2	2	14	14			
	5.0 HP	M 4.0	15/10	5.5	-4	5.5	4	3.5	3.5	12	12			
	$71 / 2 \mathrm{HP}$	M 4.0	25/16	5.5	- 4	5.5	4	5.5	5.5	10	10			
440V Class (3-Phase)	$1.0 \sim 5.0 \mathrm{HP}$	M 4.0	15/10	2	-4	2	4	2	2	14	14			
	71/2HP ~ 10HP	M 4.0	25/16	5.5	-4	5.5	4	5.5	5.5	10	10			

Power and Motor Connection

Power supply must be connected to the R/L1, S/L2, and T/L3 terminals.

Connecting it to the R/L1, S/L2, T/L3 terminals causes internal damages to the inverter.
Arranging the phase sequence is not necessary.

Motor should be connected to the U/T1, V/T2, and W/T3 terminals.

If the forward command $(\mathrm{S} 1)$ is on, the motor should rotate clockwise when viewed from the load side of the motor. If the motor rotates in the reverse, switch the U/T1 and V/T2 terminals.

[^0]
- Control Terminals

Control Circuit Wiring

Please insert the wiring of the control circuit to the wiring hole of the inverter base and adjust the switches according to different control signals.
When connecting sequence inputs (S1~S5) with transistor, turn the rotary switch SW1 depending on the polarity (0 V common: NPN side, 24 V common: PNP side). Factory setting: NPN side.Refer to the communication impedance and the analog current input selection and analog voltage input selection for the connection of S1. Please refer to page 45 .S2 is the switch for RS485/RS422 communications impedence.

Sequence connection with NPN transistor (0 V common)

Sequence connection with PNP transistor (24 V common)

Wiring the control circuit terminals

Screwdriver blade width

Insert the wire into the lower part of the terminal block and connect it tightly with a screwdriver.

Wire sheath strip length must be 5.5 mm

Wiring Inspection

After completing wiring, check the following:

- Wiring is proper.
- Screws are securely tightened.
- Bare wire in the terminal does not contact other terminals.
- Wire clippings or screws are not left in the unit.

NOTE: If the FWD/REV run command is given during the run command selection (F02=1) from the control circuit terminal, the motor will start automatically after the main circuit input power supply is turned ON.

CHAPTER 2 TEST RUN

- Test Run

The inverter operates by setting the frequency (speed).There are three types of operation modes for EI-450 :

1. Run command from the simple operator RCUS-450 or digital operator RCU-450/ RCU-450P.
2. Run command from the control circuit terminal.
3. Run command from communications (MODBUS communications).

Operation reference or frequency reference constants can be selected separately as shown below.

Name	Constants Description
Run command F02	$=0$. Enables operator RUN, STOP (Initial setting) $=1$. Enables control circuit terminal run/stop $=2$. Enables communications (MODBUS communications)
Frequency reference selection F03	$\begin{aligned} & =0 . \text { Enables simple or digital operator potentiometer (Initial setting) } \\ & =1 . \text { Enables frequency reference } 1 \text { (Constant F21) } \\ & =2 . \text { Enables voltage reference } 0-10 \mathrm{~V} \text { of control circuit terminal } \\ & =3 . \text { Enables current reference } 4-20 \mathrm{~mA} \text { of control circuit terminal } \\ & =4 \text {. Enables current reference } 0-20 \mathrm{~mA} \text { of control circuitterminal } \\ & =6 . \text { Enables communications (MODBUS) } \end{aligned}$

Test Run with Simple Operator RCUS-450

Operation steps	Status Indicator (LED)			
	DRIVE MODE	PRGM MODE	RUN	ALARM
1. Turn the potentiometer fully counter clockwise after turning the power ON.				
2. Press RUN key and turn the potentiometer the desired frequency value.				
If the volume is switched rapidly, the motor also accelerates or decelerates rapidly corresponding to the volume movement. Pay attention to load status and adjust the volume to the desired speed.				

Note:

OFF

Test Run with Digital Operator RCU-450/RCU-450P

Operation steps	Operator display	Simple Run Indicator		Status Indicator	
1. Turn the potentiometer fully counter clockwise after turning the power ON.	0.00	FREF	ON	$\begin{aligned} & \text { RUN } \\ & \text { ALARM } \end{aligned}$	$\begin{gathered} \text { BLINKING } \\ \text { OFF } \end{gathered}$
2. Press DSPL till F/R ON. Select FWD/REV run by using keys of \triangle and ∇ ***Never select REV when reverse run is prohibited.***	For or Rev	F/R	ON	RUN ALARM	BLINKING OFF
3. Press DSPL key till FREF ON and then press RUN key	0.00	FREF	ON	RUN ALARM	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$
4. Turn the potentiometer the desired frequency value. ***If the volume is switched rapidly, the motor also accelerates or decelerates rapidly corresponding to the volume movement. Pay attention to load status and adjust the volume to the desired speed. ${ }^{* * *}$	$\begin{gathered} 0.00 \\ \text { } \\ 60.00 \end{gathered}$	FREF	ON	RUN ALARM	ON OFF

Operation Check Points

- Motor rotates smoothly.
- Motor rotates in the correct direction.
- Motor does not have abnormal vibration or noise.
- Acceleeration and deceleration are smooth.
- Current matching the load flows.
- Status Indicators and Digital Operator Display are correct.

Simple Operator (RCUS-450) User Instruction

Mode Indicator

LED	Description
DRIVE MODE	When DRIVe MODE LED is ON, the inverter is in running modeand allows the inverter to run/stop and change output frequency.
PRGM MODE	- When PRGM MODE LED is ON, the inverter is in constants modifying mode. RIN key is disabled and $\frac{\operatorname{siPP}}{\operatorname{RLRHI}}$ key is enabled. - When PRGM MODE LED is ON, it could be after using digital operator RCU-450 to modify the constants of the inverter, there is an immediate change for simple operator RCUS-450 without leaving PRGM mode. - There are below two methods to change RGM MODE to DRIVE MODE: 1. POWER OFF EI-450 and then POWER ON it again. 2. Return to digital operator RCU-450 and have the inverter leave PRGM MODE and use simple operator RCUS-450.

LED Display and User Instruction

RUN

Status Indicator Description	
LED 圖示	代表意義
OA	ON
BLINKING	
OLINKING	

The details of the Status Indicator at fault could be referred to＂Chapter 6 FAULT DIAGNOSIS＂

[^1]
Digital Operator (RCU-450/RCU-450P) User Instruction

Run Mode IndicatorFREF : Frequency reference setting/monitoringFOUT : Output frequency monitorIOUT : Output current monitorMNTR
: Multi-function monitor. Us in U-01~U-15F/R : Digital Operator RUN command FWD/REV selection. Use \mathbb{N} keys to select motor rotation direction when F/R is ON.
LO/RE : LOCAL/REMOTE selection. Use $\mathbb{\triangle}$ keys to select LOCAL/REMOTE

Constants Editing Mode Indicator:

PRGM :When it is ON, the inverter is constants editing mode. Use刃 V DATA keys to monitor, set or change constants values. Press DSSL key to leave PRGM mode for Run mode.
Status Indicator:

There are RUN LED and ALARM LED on digital operator RCU-450/RCU-450P and their function is exactly the same as status indicators on RCUS-450. Please refer to page 25.

LED Display and User Instruction of Digital Operator RCU-450/RCU-450P:

MNTR Multi-function Monitor

Pres DSPL key. WhenMNTR is ON, data can be displayed by selecting monitor No. Select UO4 by pressing

$\square \quad$ Monitoring

Following items can be monitored by U-constants:

Constant No.	Name	Unit	Description
U-01	Frequency reference (FREF)	HZ	Frequency reference can be monitored. (Same as FREF)
U-02	Output frequency (FOUT)	HZ	Output frequency can be monitored. (Same as FOUT)
U-03	Output current (IOUT)	A	Output current can be monitored (Same as IOUT)
U-04	Output voltage	VAC	Output voltage can be monitored.
U-05	DC voltage	VDC	Main circuit DC voltage can be monitored.
U-06	Input terminal status	-	Input terminal status of control circuit terminals can be monitored.(S1~S5)
U-07	Output terminal status	-	Output terminal status of control circuit terminals can be monitored.(MA)
U-09	Fault history	-	Newest fault history is displayed.
U-10	Model No.	-	Model No. can be checked.
U-15	Data reception error	-	Contents of MODBUS communication data reception error can be checked.

- U-09 can display newest fault history.
- Clear the fault history by setting $\mathrm{F} 01=6$ (fault history cleared) or $\mathrm{F} 01=8$ or 9 .

Input/Output Terminal Status

Input terminal status:

Output terminal status:

LOCAL/REMOTE Selection

- LOCAL mode: Enables the digital operator RCU-450/RCU-450P for RUN/STOP commands and FWD/REV run commands. Frequency reference can be set by potentiometer or FREF.
- REMOTE mode: Enables the digital operator RCU-450/RCU-450P for RUN/STOP commands (F03) and FWD/REV run commands (F02) or for multi-function input terminal and communications mode.

Switching LOCAL/REMOTE Modes

Selecting Run/Stop Commands

Refer to LOCAL/REMOTE selection to select either LOCAL or REMOTE mode. Operation method (RUN / STOP commands, FWD / REV run commands) can be selected by the following method.

- LOCAL Mode:

When LO (local mode) is displayed on the digital operator RCU-450/RCU-450P (when is illuminated), or when the LOCAL / REMOTE changeover function is set as a multi-function input and the input terminal is turned ON, run operation is enabled by the RUN or STOP key. FWD/REV is selected by illuminating F/R and using \AA or \mathbb{V} key to select FWD or REV.

- REMOTE Mode:

Select RE (remote mode). When the local / remote switching function is selected as multi-function input selection, turn OFF the input terminal to select remote mode. Select operation method by setting the constant F02:
F02 : $=0 \cdots$ Enables the digital operator (RCU-450/RCU-450P)
$=1 \cdots$ Enables the multi-function input terminal
$=2 \cdots$ Enables communications (MODBUS)
Frequency reference: Setting the constant F03.

EI-450 Setting and Referring Constants

Simple Run Setting

Following is an example of the run setting: Condition request to have frequency 45.00 HZ controlled by digital operator RCU-450/RCU-450P; acceleration time is 18 seconds; deceleration time is 3 seconds for forward/reverse setting. (F03=1)

Operation steps	Operator display	Simple Run Indicator		StatusIndicator	
1. Turn ON the power supply.	0.0	FREF	ON	RUN ALARM	$\begin{gathered} \text { BLINKING } \\ \text { OFF } \end{gathered}$
2. Press DSPL key. When PRGM is ON, set F03 to 1	1	PRGM	ON	RUN ALARM	$\begin{gathered} \text { BLINKING } \\ \text { OFF } \end{gathered}$
3. Set the following constants. F16 $=18.0$ (acceleration time) F17 $=3.0$ (deceleration time)	$\begin{array}{r} 18.0 \\ 3.0 \end{array}$	PRGM	ON	RUN ALARM	$\begin{gathered} \text { BLINKING } \\ \text { OFF } \end{gathered}$
4. Press DSPL key. When F/R is ON, select forward or reverse run by pressing up or down key. ***Examine the application. Never select REV when reverse run is prohibited.***	For or Rev	F/R	ON	RUN ALARM	$\begin{gathered} \text { BLINKING } \\ \text { OFF } \end{gathered}$
5. Press DSPL key. When FREF is ON, press up and down key to set the reference 45 Hz .	45.0	FREF	ON	RUN ALARM	$\begin{gathered} \text { BLINKING } \\ \text { OFF } \end{gathered}$
6. Press DSPL key. When FOUT is ON, press RUN key to run the inverter.	$0.0>45.0$	FOUT	ON	RUN ALARM	ON OFF
7. Press STOP key to stop the inverter.	$45.0>0.0$	FOUT	ON	$\begin{aligned} & \text { RUN } \\ & \text { DECEL } \\ & \text { ALARM } \end{aligned}$	ON BLINKING OFF

CHAPTER 3 CONSTANTS LIST

No.	Register No. for Trans- mission	Name	Description	Initial	Ref.
Setting					
Page					

No.	Register No. for Trans- mission	Name	Description	Initial Setting	Ref. Page
09	0309H	Maximum output frequency	Setting unit: 0.1 Hz (less than 100 Hz) / 1 Hz (100 Hz or greater) Setting range: $50.0 \sim 400 \mathrm{~Hz}$	60.0 Hz	48
10	030AH	Maximum voltage	Setting unit: 1V Setting range: $1 \sim 255 \mathrm{~V}$	$\begin{array}{c\|} \hline 230 \mathrm{~V} \\ \text { (Note 1) } \\ \hline \end{array}$	48
11	030BH	Maximum voltage output frequency	Setting unit: 0.1 Hz (less than 100 Hz) / 1 Hz (100 Hz or greater) Setting range: $0.2 \sim 400 \mathrm{~Hz}$	60.0 Hz	48
12	030CH	Mid. output frequency	Setting unit: 0.1 Hz (less than 100 Hz) / 1 Hz (100 Hz or greater) Setting range: $0.1 \sim 399 \mathrm{~Hz}$	1.5 Hz	48
13	030DH	Mid. output frequency voltage	Setting unit: 1V Setting range: 1-255V	$\begin{gathered} \hline 12 \mathrm{~V} \\ \text { (Note1) } \end{gathered}$	48
14	030EH	Minimum output frequency	Setting unit: 0.1 Hz Setting range: $0.1 \sim 10.0 \mathrm{~Hz}$	1.5 Hz	48
15	030FH	Minimum output frequency voltage	Setting unit: 1V Setting range: $1 \sim 50 \mathrm{~V}$	$\begin{gathered} \hline 12 \mathrm{~V} \\ \text { (Note1) } \end{gathered}$	48
16	0310H	Acceleration time 1	Setting unit: 0.1s (less than 100s) / 1s (100s or greater) Setting range: $0.0 \sim 999 \mathrm{~s}$	10.0s	51
17	0311H	Deceleration time 1	Setting unit: 0.1 s (less than 100s) / 1s (100s or greater) Setting range: $0.0 \sim 999 \mathrm{~s}$	10.0s	51
18	0312H	Acceleration time 2	Setting unit: 0.1s (less than 100s) / 1s (100s or greater) Setting range: $0.0 \sim 999 \mathrm{~s}$	10.0s	51
19	0313H	Deceleration time 2	Setting unit: 0.1s (less than 100s) / 1s (100s or greater) Setting range: $0.0 \sim 999$ s	10.0s	51
20	0314H	S-curve accel / decel selection	$\begin{aligned} & \text { 0: No S-curves } \\ & 1: 0.2 \mathrm{~s} \\ & 2: 0.5 \mathrm{~s} \\ & 3: 1.0 \mathrm{~s} \\ & \hline \end{aligned}$	0	51
21	0315H	Frequency reference 1 (Master speed frequency reference)	Setting unit: 0.1 Hz (less than 100 Hz) / $1 \mathrm{~Hz}(100 \mathrm{~Hz}$ or greater) Setting range: $0.0 \sim 400 \mathrm{~Hz}$	6.0 Hz	53
22	0316H	Frequency reference 2	Setting unit: 0.1 Hz (less than 100 Hz) / 1 Hz (100 Hz or greater) Setting range: $0.0 \sim 400 \mathrm{~Hz}$	0.0Hz	53

No.	Register No. for Transmission	Name	Description	Initial Setting	Ref. Page
23	0317H	Frequency reference 3	Setting unit: 0.1 Hz (less than 100 Hz) / 1 Hz (100 Hz or greater) Setting range: $0.0 \sim 400 \mathrm{~Hz}$	0.0 Hz	53
24	0318H	Frequency reference 4	Setting unit: 0.1 Hz (less than 100 Hz) / 1 Hz (100 Hz or greater) Setting range: $0.0 \sim 400 \mathrm{~Hz}$	0.0 Hz	53
25	0319H	Frequency reference 5	Setting unit: 0.1 Hz (less than 100 Hz) / 1 Hz (100 Hz or greater) Setting range: $0.0 \sim 400 \mathrm{~Hz}$	0.0 Hz	53
26	031AH	Frequency reference 6	Setting unit: 0.1 Hz (less than 100 Hz) / $1 \mathrm{~Hz}(100 \mathrm{~Hz}$ or greater) Setting range: $0.0 \sim 400 \mathrm{~Hz}$	0.0 Hz	53
27	031BH	Frequency reference 7	Setting unit: 0.1 Hz (less than 100 Hz) / $1 \mathrm{~Hz}(100 \mathrm{~Hz}$ or greater) Setting range: $0.0 \sim 400 \mathrm{~Hz}$	0.0 Hz	53
28	031CH	Frequency reference 8	Setting unit: 0.1 Hz (less than 100 Hz) / 1 Hz (100 Hz or greater) Setting range: $0.0 \sim 400 \mathrm{~Hz}$	0.0 Hz	53
29	031DH	Jog frequency reference	Setting unit: 0.1 Hz (less than 100 Hz) / $1 \mathrm{~Hz}(100 \mathrm{~Hz}$ or greater) Setting range: $0.0 \sim 400 \mathrm{~Hz}$	6.00 Hz	54
30	031EH	Frequency reference upper limit	Setting unit: 1% Setting range: $0 \sim 110 \%$	100\%	54
31	031FH	Frequency reference lower limit	Setting unit: 1% Setting range: $0 \sim 110 \%$	0\%	54
32	0320H	Motor rated current	Setting unit: 0.1A Setting range: $0 \sim 120 \%$ of inverter rated output current Note: if set to 0%, then electronic thermal motor overload is disable	(Note 2)	54
33	0321H	Electronic thermal motor protection	0 : Standard motor application 1: Specialized motor application 2: No electronic motor overload protection	0	54
34	0322H	Constant selection at electronic thermal motor protection	Setting unit: 1 min Setting range: $1 \sim 60 \mathrm{~min}$	8 min	54
35	0323H	Cooling fan operation selection	0: Controls the cooling fan OFF / ON 1: Operates when power is ON.	0	57

No.	Register No. for Transmission	Name	Description	Initial Setting	Ref. Page
36	0324H	Multi-function input selection 2	1: Not used 2: Reverse run reference (2 wire sequence) 3: External fault (A. contact input) 4: External fault (B. contact input) 5: Fault reset 6: Multi speed reference 1 8: Multi speed reference 2 7: Multi speed reference 3 9: Not used 10: Jog reference 11: Accel / decel time switching reference 12: External baseblock reference (A contact input) 13: External baseblock reference (B contact input) 14: Speed search command from Max. output frequency 15: Speed search command set frequency 16: Accel / decel hold 17: Local / remote switching 18: Communication / control circuit terminal switching 19: Emergency stop fault (A contact input) 20: Emergency stop alarm (A. contact input) 21: Emergency stop fault (B. contact input) 22: Emergency stop alarm (B contact input) 23~ 33: Unused	2	58
37	0325H	Multi-function input selection 3	0: Forward / reverse command (3 wire sequence) Others are the same as constant 36	5	58
38	0326H	Multi-function input selection 4	Same as constant 36	3	58

No.	Register No. for Trans- mission	Name	Description	Initial Setting	Ref. Page
39	0327H	Multi-function input selection 5	Same as constant F36 34: Up/down reference 35: Self-test (Note: valid power ON / OFF)	6	58
40	0328H	Multi-function output selection	0: Fault 1: During run 2: Frequency agree 3: During zero speed 4: Frequency detection (detection level or greater) 5: Frequency detection (detection level or less) 6: During over torque detection (A contact output) 7: During over torque detection (B contact output) 8: Not used 9: Not used 10: Minor fault (during warning display) 11: During baseblock 12: Run mode 13: Inverter ready 14: During fault retry 15: During UV 16: During reverse run 17: During speed search 18: Data output through communication	1	63
41	0329H	Analog frequency reference gain	Setting unit: 1\% Setting range: 0-255\%	100\%	64
42	032AH	Analog frequency reference bias	Setting unit: 1% Setting range: -99~99\%	0\%	64
43	032BH	Analog frequency reference filter time constant	Setting unit: 0.01s Setting range: $0.00 \sim 2.00 \mathrm{~s}$ (Note) When 0.00 s is set, there is no filter	0.10s	64
44	032CH	Monitor item selection	0 : Output frequency 1: Output current	0	65
45	032DH	Monitor gain	Setting unit: 0.01 Setting range: $0.01 \sim 2.00$	1.00	66

No.	Register No. for Transmission	Name	Description	Initial Setting	Ref. Page
46	032EH	Carrier frequency	Set value: $1 \sim 4$ carrier frequency $=$ set value $¥ 2.5 \mathrm{kHz}$ Set value: Synchronous type of $7 \sim 9$ lower limit 1 kHz and upper limit 2.5 kHz	(Note 3)	66
47	032FH	Operation selection after momentary power loss	0: Operation does not continue. 1: Operation continues within momentary power ride through time 2: Operation always continues. (No UV1 fault detection)	0	68
48	0330H	Fault reset	Setting unit: time Setting range: $0 \sim 10$ times	0 time	69
49	0331H	Jump frequency 1	Setting unit: 0.1 Hz (less than 100 Hz) / 1 Hz (100 Hz or greater) Setting range: $0.00 \sim 400 \mathrm{~Hz}$ (Note) If 0.0 Hz is set, jump frequency 1 is enabled.	0.0Hz	69
50	0332H	Jump frequency 2	Setting unit: 0.1 Hz (less than 100 Hz) / 1 Hz (100 Hz or greater) Setting range: $0.00 \sim 400 \mathrm{~Hz}$ (Note) If 0.0 Hz is set, jump frequency 2 is disabled.	0.0Hz	69
51	0333H	Jump frequency width	Setting unit: 0.1 Hz Setting range: $0.0 \sim 25.5 \mathrm{~Hz}$ (Note) If 0.0 Hz is set, jump frequencies $1 \sim 2$ are disabled.	0.0Hz	69
52	0334H	DC injection braking current	Setting unit: 1% Setting range: $0 \sim 100 \%$ (note) If 0% is set, it becomes baseblock status.	50\%	69
53	0335H	DC injection braking time at stop	Setting unit: 0.1s Setting range: $0.0 \sim 25.5 \mathrm{~s}$ (Note) If 0.0 s is set, this function will not operate.	0.5 s	69
54	0336H	DC injection braking time at start	Setting unit: 0.1s Setting range: $0.0 \sim 25.5 \mathrm{~s}$ (Note) If 0.0 s is set, this function will not operate.	0.0s	69

No.	Register No. for Transmission	Name	Description	Initial Setting	Ref. Page
55	0337H	Stall prevention (current limit) during decel	0 : Stall prevention function is enabled during deceleration. 1: Stall prevention function is disabled during deceleration	0	70
56	0338H	Stall prevention (current limit) during accel	Setting unit: 1\% Setting range: $30 \sim 200 \%$ (Note): If set at 200%, this function will not operate. (Note): For rated output range, the operator level is automatically reduced.	170\%	71
57	0339H	Stall prevention (current limit) during running	Setting unit: 1\% Setting range: $30 \sim 200 \%$ (Note): If set at 200%, this function will not operate.	160\%	71
58	033AH	Frequency detection level	Setting unit: 0.1 Hz (less than 100 Hz) / 1 Hz (100 Hz or greater) Setting range: $0.00 \sim 400 \mathrm{~Hz}$	0.0Hz	72
59	033BH	Overtorque detection (OL3)	0 : Overtorque detection disabled. 1: Detects only at speed agree, operation continues after detection. 2: Detects only at speed agree, output is shut down after detection. 3: Detects during run, operation continued after detection. 4: Detects during run, output is shut down after detection.	0	73
60	033CH	Overtorque detection Level (OL3)	Setting unit: 1% Setting range: 30~200\%	160\%	73
61	033DH	Overtorque detection Time (OL3)	Setting unit: 0.1 s Setting range: $0.1 \sim 10.0 \mathrm{~s}$	0.1s	73
62	033EH	Memory selection of hold output frequency	0 : Hold output frequency is not stored. 1: Hold output frequency is stored	0	74
63	033FH	Torque compensation gain	Setting unit: 0.1 Setting range: $0.0 \sim 2.5$	1.0	74
64	0340H	Motor rated slip	Setting unit: 0.1 Hz Setting range: $0.0 \sim 20.0 \mathrm{~Hz}$	(Note 2)	74
65	0341H	Motor no-load current	Setting unit: 1% Setting range: 0 ~ 99\%	(Note 2)	74

No.	Register No. for Trans- mission	Name	Description	Initial Setting	Ref. Page
66	0342H	Slip compensation gain	Setting unit: 0.1 Setting range: $0.0 \sim 2.5$	0.0	74
67	0343H	Slip compensation primary delay time	Setting unit: 0.1s Setting range: $0.0 \sim 25.5 \mathrm{~s}$	2.0s	74
68	0344H	Timeover detection selection	0 : Timeover detection enabled. (Coast to stop) 1: Timeover detection enabled. (Deceleration stop by deceleration time 1) 2: Timeover detection enabled. (Deceleration stop by deceleration time 2) 3: Timeover detection enabled. (Operation continues, alarm displays) 4: Timeover detection disabled.	0	76
69	0345H	Setting unit selection of communications frequency reference/ frequency monitor	$0: 0.1 \mathrm{~Hz} / 1$ $1: 0.01 \mathrm{~Hz} / 1$ $2: 100 \% / 30000$ $3: 0.1 \% / 1$	0	76
70	0346H	Slave address	Setting unit: 1 Setting range: $0 \sim 32$	0	76
71	0347H	Baud rate selection	$\begin{aligned} & 0: 2400 \mathrm{bps} \\ & 1: 4800 \mathrm{bps} \\ & \text { 2: } 9600 \mathrm{bps} \\ & \text { 3: } 19200 \mathrm{bps} \\ & \hline \end{aligned}$	2	76
72	0348H	Parity selection	0: Even parity 1: Odd parity 2: No parity	0	76
73	0349H	Send waiting time	Setting unit: $1=1 \mathrm{~ms}$ Setting range: $10 \sim 65 \mathrm{~ms}$	10ms	76
74	034AH	RTS control	0 : RTS control enabled 1: RTS control disabled	0	76
75	034BH	Carrier frequency at low speed	0: Disabled 1: Carrier frequency reduced to 2.5 kHz when Fout $\leqq 5 \mathrm{~Hz}$ and Iout $\geqq 110 \%$	0	78

No.	Register No. for Trans- mission	Name	Description	Initial Setting	Ref. Page
$\mathbf{7 6}$	$\mathbf{0 3 4 C H}$	Constants COPY function selection	rdy: Execution completed / execution command receive condition rEd: READ execute Cpy: COPY execute vFy: VRFY execute vA: kVA display Sno: Model No. display	rdy	78
$\mathbf{7 7}$	$\mathbf{0 3 4 D H}$	Constants READ prohibit selection	0: READ prohibited. 1: READ allowed.	The 1 newest event is displayed (Note) Setting is disabled.	-
78	034 EH	Fault history	Lower 3 digits of 450 numbers are displayed. (Note): Setting is disabled.	-	-
79	034 FH	Inverter model No.	-		

No. in \square refers to those constants which can be changed during operation.
*1 Upper limit of setting range and initial setting are doubled at 440 V class.
*2 Changes depending on inverter capacity. Refer to the below.
*3 Changes depending on inverter capacity. The initial setting of carrier frequency can be referred to constant F46.

- Initial Settings That Change with The Inverter Capacity

220V Class 3-phase/Single-phase

No.	Name	Unit	Initial Setting						
-	Inverter capacity	HP	$1 / 4 \mathrm{HP}$	$1 / 2 \mathrm{HP}$	1HP	2 HP	3 HP	5 HP	7.5 HP
F32	Inverter rated current	A	1.1	1.9	3.3	6.2	8.5	14.1	19.6
F64	Inverter rated slip	Hz	2.6	2.9	2.5	2.6	2.9	3.3	1.5
F65	Motor no-load current	$\%$	73	62	55	45	35	32	26

440V Class 3-phase

No.	Name	Unit	Initial Setting					
-	Inverter capacity	HP	1HP	2HP	3HP	5HP	7.5 HP	10 HP
F32	Inverter rated current	A	1.6	3.1	4.2	7.0	9.8	13.3
F64	Inverter rated slip	Hz	2.6	2.5	3.0	3.2	1.5	1.3
F65	Motor no-load current	$\%$	52	45	35	33	26	30

CHAPTER 4 PROGRAMMING FEATURES

F01: Constants write-in prohibit/initialize

Setting	Consant that can be set	Constant that can be referred (READ only)
0	F01	F01~F79

NOTE
Err appears on the LED display for one second and the set data returns to its initial values in the following cases:
(1) The set values of multi-function input selection 2 to 5 (F36~F39) are the same.
(2) If the following conditions are not satisified in the V/F pattern setting:

Max. output frequency (F09) \geq Max. voltage output frequency (F11)
$>$ Mid. Output frequency (F12)
\geq Min. output frequency (F14)
(3) If the following conditions are not satisified in the jump frequency setting: Jump frequency 2 (F50) \leq Jump Frequency 1 (F49)
(4) If frequency reference lower limit (F31) \leq Frequency reference upper limit (F30)
(5) If motor rated current $(\mathrm{F} 32) \leq 120 \%$ of inverter rated current

F02: Operation reference selection

Select operation method by setting the constant F02.
$\mathrm{F} 02=0 \square \square \square$ Enables the digitial operator RCU-450/RCU-450P/RCUS-450 (initial setting)
$=1 \square \square \square$ Enables the mluti-function input terminal
$=2 \square \square \square$ Enables communications (MODBUS)
Example for using the multi-function input terminal as operation reference (two-wire sequence).

Operating (RUN/STOP Commands) by Communications

Setting constant F02 to 2 in REMOTE mode can give RUN/STOP commands by communication (MODBUS). For details, refer to page 76.

F03: Frequency reference selection

Select command method by contant F03.
F03=0: Enables frequency reference setting by potentiometer on digital operator (RCU-450 or RCU-450P or RCUS-450). (Initial setting)
$=1$: Frequency reference 1 (constant F21) is effective.
$=2$: Voltage reference $(0-10 \mathrm{~V})$ (FR terminal)
$=3$: Current reference ($4-20 \mathrm{~mA}$) (FR terminal)
$=4$: Current reference $(0-20 \mathrm{~mA})$ (FR terminal)
$=6$: MODBUS communications(R+, R-, S+, S- terminals)
F03=2: Example of frequency reference by voltage signal.

F03＝3（or 4）
When setting frequency by inputting current reference from the control circuit terminal FR， switch the DIP switch S1 to＂ I_{in}＂．

Select current reference method is as following：
Current reference $4-20 \mathrm{~mA} \square \square \square$ constant $\mathrm{F} 03=3$ ．
Current reference $0-20 \mathrm{~mA} \square \square \square$ constant $\mathrm{F} 03=4$ ．
The following two examples are two control method to control frequency reference by external current reference and they are adjusted by S 1 ．

Example 1：
After switching DIP switch S1 to＂ $\mathrm{I}_{\text {in }}$＂，set constant F02 to 0，F03＝3（or 4）．Press the digital operator keys to run or stop the inverter．Switch run and stop direction by setting F／R LED．

Set frequency by analog current signal constant F03〔0～100\％（Max．frequency） $14 \sim 20 \mathrm{~mA}$ or $0 \sim 20 \mathrm{~mA}$ 〕．

Example 2：
Set constant $\mathrm{F} 02=1, \mathrm{~F} 03=3$（or 4）．
Multi－function input terminal S 1 is set to Forward run／Stop．
Multi－function input terminal S2 is set to Reverse run／Stop（F36＝2）．

Set frequency by the analog current signal〔0～100\％（Max．frequency）／4～20mA or $0 \sim 20 \mathrm{~mA}$ 〕．

Frequency reference gain（F41）／bias（F42）can be set even when current input is selected．

\bigcirc
 Communication Mode

Select RE for LO/RE selection. Turn OFF the multi-function input LOCA/REMOTE terminal and set F04 to 6. The frequency of the inverter is set by MODBUS setting frequency.

F04: Stopping method selection

Select the stopping method suitable for application.

F04 Setting	0 (Initial setting)	1
Stopping Method	Deceleration to stop	Coast to stop

F04=0 Deceleration to Stop

Example when accel/decel time 1 is selected.

Upon termination of the FWD (REV) run command, the motor decelerates at the decel rate determined by the time set to deceleration time 1 and DC injection braking is applied immediately before stop. DC injection braking is also applied when the motor decelerates by setting frequency reference lower than min. output frequency with FWD (REV)run command ON. If the decel time is short or the load inertia is large, overvoltage (OV) fault may occur at deceleration. In this case, increase the decel time or install an optional braking resistor.

Braking torque: Without braking resistor: Approx. 20% torque of motor rating. With braking resistor: Approx. 150% torque of motor rating.

F04=1 Coast to Stop

Example when accel/decel time 1 is selected.

Upon removal of the FWD (REV)run command, the motor starts coasting.

F05: Reverse run prohibit

" Reverse run prohibit" setting does not accept a reverse run command from the control circuit terminal or digital operator. This setting is used for applications where a reverse run command can cause problems.

F05 Setting	0 (Initial setting)	1
Content	Reverse run enabled	Reverse run disabled

F06: Operation stop key selection

Selects processing when STOP key is pressed during operation either from multi-function input terminal or communications.

F06 Setting	Description
(Initial setting)	STOP key effective when running either from multi-function input terminal or communications. When STOP key is pressed, the inverter stops according to setting of constant F04. At this time, the digital
operator displays " STP" alarm (blinking). This stop command is held in the inverter until both forward and reverse run commands are open, or until run command from communications becomes zero.	
1	STOP key ineffective when running either from multi-function input terminals or communications.

F07: Frequency reference selection in LOCAL mode

F07=0(Initial setting): Enables the setting by potentiometer on digital operator.
$=1 \quad:$ Enables the digital setting by $\mathbb{\triangle}$ keys on digital operator. The setting value is stored in constant F21 (Frequency reference 1).

F08: Setting method selection for frequency reference

When F07 is set to 1, Use $\mathbb{\triangle}$ to set the frequency reference.

*The intitail setting of constant F08 is 0 and when setting the frequency reference, $\frac{\text { DatiA }}{\text { AniR }}$ key must be pressed.
F08 $=0$: Enables frequency reference setting by
$=1$: Disables frequency reference setting by $\left[\frac{\text { Daran }}{\text { NaRTR }} k\right.$ key.
F09: Maximum output frequency
F10: Maximum voltage
F11: Maximum voltage output frequency
F12: Mid. output frequency
F13: Mid. output frequency voltage
F14: Minimum output frequency
F15: Minimum output frequency voltage

No.	Name	Unit	Setting range	Initial setting
F09	Maximum output frequency	0.1 HZ	50.0-400.0HZ	60.0 HZ
F10	Maximum voltage	1V	$\begin{gathered} 0.1-255.0 \mathrm{~V} \\ (0.1-510.0 \mathrm{~V}) \end{gathered}$	$\begin{gathered} 200.0 \mathrm{~V} \\ (400.0 \mathrm{~V}) \end{gathered}$
F11	Maximum voltage output frequency	0.1 HZ	0.2-400.0HZ	60.0HZ
F12	Mid. Output frequency	0.1 Hz	0.1-399.9HZ	1.5HZ
F13	Mid. Output frequency voltage	1V	$\begin{gathered} \hline 0.1-255.0 \mathrm{~V} \\ (0.1-510.0 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \hline 12.0 \mathrm{~V} \\ (24.0 \mathrm{~V}) \end{gathered}$
F14	Minimum output frequency	0.1 HZ	0.1-10.0HZ	1.5 HZ
F15	Minimum output frequency voltage	1 V	$\begin{gathered} \hline 0.1-50.0 \mathrm{~V} \\ (0.1-100.0 \mathrm{~V}) \end{gathered}$	$\begin{gathered} \hline 12.0 \mathrm{~V} \\ (24.0 \mathrm{~V}) \end{gathered}$

The value in () of F10, F013 and F15 is the setting of 440 V class.

- Selecting V/F Pattern

V/F setting is based on output frequency and output voltage. The intital setting is used for general motor and set each pattern when using a special motor (high-speed motor, etc.) or when requiring special torque adjustment of machine.

Be sure to satisfy the following condition. F14 \leq F12 $<$ F11 \leq F09

If F14=F12, the set value of F13 is disabled.

Typical Setting of V/F Pattern

(1) Set the V/F pattern according to the application as described below.
(2) For 440 V class, the voltage values (F10, F13 and F15) should be doubled.
(3) When running at a frequency exceeding $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$, change the maximum output frequency (F09).

(1) For general-purpose applications

Motor spec.: 60 HZ

Constant	Setting
F09	60.0
F10	200.0
F11	60.0
F12	1.5
F13	12.0
F14	1.5
F15	12.0

v_{\uparrow}	Motor Spec.:50HZ	
	Constant	Setting
	F09	50.0
7	F10	200.0
	F11	50.0
	F12	1.3
	F13	12.0
	F14	1.3
13	F15	12.0

(2) For fans/pumps

Motor Spec.:60HZ

Constant	Setting
F09	$\mathbf{6 0 . 0}$
F10	$\mathbf{2 0 0 . 0}$
F11	$\mathbf{6 0 . 0}$
F12	$\mathbf{3 0 . 0}$
F13	$\mathbf{5 0 . 0}$
F14	1.5
F15	$\mathbf{1 0 . 0}$

Motor Spec.:50HZ

${ }^{1}$	Motor Spec.:50HZ	
	Constant	Setting
	F09	50.0
/	F10	200.0
	F11	50.0
	F12	25.0
	F13	50.0
	F14	1.3
	F15	10.0

(3) For applications requiring high starting torque

Motor Spec.:60HZ

Constant	Setting
F09	$\mathbf{6 0 . 0}$
F10	200.0
F11	60.0
F12	3.0
F13	24.0
F14	1.5
F15	18.0

Motor Spec.:50HZ

Constant	Setting
F09	50.0
F10	200.0
F11	50.0
F12	2.5
F13	$\mathbf{2 4 . 0}$
F14	1.3
F15	$\mathbf{1 8 . 0}$

Increasing voltage of V/F pattern increase motor torque, but an excessive increase may cause :
(1) motor overexcitation to damage inverter.
(2) motor overheat or vibration so slowly increasing voltage and monitoring on motor current is suggested.
When operating with frequency larger than $60 \mathrm{~Hz} / 50 \mathrm{~Hz}$, change only maximum output frequency (F09).

Full-range Automatic Torque Boost

Motor torque requirement changes according to load conditions. Full-range automatic torque boost adjusts voltage of V/F pattern according to the requirement. EI-450 automatically adjusts the voltage during constant-speed operation as well as acceleration. The required torque is calculated by the inverter and this enasures triples operation and energy-saving effects.

$$
\text { Output voltage a Torque compensation gain (F63) } \times \text { Required torque }
$$

Normally, no adjustment is necessary for torque compensation gain (F63). When the wiring distance between the inverter and the motor is long, or when the motorgenerates vibration, change the automatic torque boost gain. In these cases, set the V/F pattern (F09 to F15). Initial setting: F63=10

F16: Acceleration time 1
F17: Deceleration time 1
F18: Acceleration time 2
F19: Deceleration time 2
F20: S-Curve accel/decel selection

No.	Name	Units	Setting range	Initial setting
F16	Acceleration time 1	0.1 s(less than 100 s)1 s(more than 100s)	$0.0 \sim 999 \mathrm{~s}$	10.0s
F17	Deceleration time 1		0.0~999s	10.0s
F18	Acceleration time 2		$0.0 \sim 999 \mathrm{~s}$	10.0s
F19	Deceleration time 2		$0.0 \sim 999 \mathrm{~s}$	10.0s

O Using Two Accel/Decel Times

Set Multi-function input selection (F36~F39) to 11 (accel/decel time switching terminal). By the means of the combination of accel/decel time switching terminal 1 and accel/decel time switching terminal 2, accel/decel time is selected by turning ON/OFF the accel/decel time select (terminal S2 to S5).

AT OFF: F16 (accel time 1) are used.
F17 (decel time 1)
AT ON: F18 (accel time 2) are used. F19 (decel time 2)

- Accel time: Set the time needed for output frequency to reach 100% from 0%. (100% is the setting value of F09)
- Decel time: Set the time needed for output frequency to reach 0% from 100%.
(Maximum output frequency F09=100\%)

Soft-start Characteristics $\mathbf{F 2 0}=\mathbf{0}$ (Initial Setting)

To prevent shock at machine start/stop, accel/decel can be performed in S-curve pattern.

Setting	S-curve selection
0	S-curve characteristic not provided
1	0.2 s
2	0.5 s
3	1.0 s

The following time chart shows FWD/REV run switching at deceleration to a stop.

S-curve characteristics

F21: Frequency reference 1 (Master speed frequency reference)

F22: Frequency reference 2

F23: Frequency reference 3
F24: Frequency reference 4
F25: Frequency reference 5
F26: Frequency reference 6
F27: Frequency reference 7
F28: Frequency reference 8
By combining frequency reference and input terminal function selections, up to 9 steps of speed can be set.
8 -step speed change:
F02 $=1$ (Operation mode selection) \quad F36 $=2$ (Multi-function contact input terminal S2)
F03=1 (Frequency reference selection) F37 $=6$ (Multi-function contact input terminal S3)
$\mathrm{F} 21=25.0 \mathrm{~Hz}$ (Frequency reference 1)
F22 $=30.0 \mathrm{~Hz}$ (Frequency reference 2)
$\mathrm{F} 23=35.0 \mathrm{~Hz}$ (Frequency reference 3)
$\mathrm{F} 24=40.0 \mathrm{~Hz}$ (Frequency reference 4)
F25 $=45.0 \mathrm{~Hz}$ (Frequency reference 5)
F26 $=50.0 \mathrm{~Hz}$ (Frequency reference 6)
F27 $=55.0 \mathrm{~Hz}$ (Frequency reference 7)
F28 $=60.0 \mathrm{~Hz}$ (Frequency reference 8)
NOTE: When all multi-function reference inputs are OFF, frequency reference selected by constant F03 F38=7 (Multi-function contact input terminal S4) F39=8 (Multi-function contact input terminal S5)
 (frequency reference selection) Becomes effective.

9-step speed change:
The setting is the same as 8 -step speed change. Set F36=10 (Multi-function input terminal S2 as jog frequency). F29 jog frequency ($0.0 \sim 400 \mathrm{HZ}$) is used as frequency reference 9 .

F29: Jog frequency reference (Frequency reference 9)

By inputting a jog command and then a forward (reverse) run command, operation is enabled at the jog frequency set in F29. When multi-step speed references 1, 2, 3 are input simultaneously with the jog command, the jog command has priority.

Constant No.	Name	Setting
F29	Jog frequency reference	Initial setting: 6.0 HZ
F36 to F39	Jog reference	Set to "10" for any constant.

F30: Frequency reference upper limit F31: Frequency reference lower limit

Frequency Reference Upper Limit (F30)

Sets the upper limit of the frequency reference in units of 1%.
(F09: Max. output frequency $=100 \%$)

Frequency Reference Lower Limit (F31)

Sets the lower limit of the frequency reference in units of 1%.
(F09: Max. output frequency $=100 \%$)
When operating at frequency reference 0 , operation is continued at the frequency reference lower limit.
However, when frequency reference lower limit is set to less than the minimum output frequency (F14), operation is not performed

F32: Motor rated current

F33: Electronic thermal motor protection
F34: Constants selection at electronic thermal motor protection

〇 Motor Overload Detection

EI-450 protects against motor overload with a built-in electronic thermal overload relay.
Please do the proper setting as following.
Motor rated current(F32): Set to the rated current value shown on the motor nameplate.
Note: Setting to 0.0A disables the motor overload protective function.

Motor Overload Protection Selection (F33, F34)

F33 Setting	Electronic thermal characteristics
0 (Initial setting)	Applied to general-purpose motor
1	Applied to inverter motor
2	Electronic thermal overload protection not provided

Constants No.	Name	Unit	Setting range	Initial setting
F34	Electronic thermal motor protection	1 min	$1 \sim 60 \mathrm{~min}$	8 min

The electronic thermal overload function monitors motor temperature, based on inverter output current and time, to protect the motor from overheating. When electronic thermal overload relay is enabled, an "OL1" error occurs, shutting OFF the inverter output and preventing excessive overheating in the motor. When operating with one inverter connected to one motor, an external thermal relay is not needed. When operating several motors with one inverter, install a thermal relay on each motor.

General-purpose Motor and Inverter Motor

Induction motors are classified as general-purpose motors or inverter motors, based on their cooling capabilities. Therefore, the motor overload function operates differently between these two motor types.

	Cooling effect	Torque characteristics	Electronic thermal overload
	Effective when operated at 50/60Hz from commercial power supply.	For-low-speed operation, torque must be limited in order to stop motor temperature rise	" OL1" error (motor overload protection) occurs when continuously operated at $50 / 60 \mathrm{~Hz}$ or less at 100% load.
苟	Effective even when operated at low speed (approx. 6Hz).	Use an inverter motor for continuous operation at low speed.	Electronic thermal overload protection not activated even when continuously operated at $50 / 60 \mathrm{~Hz}$ or less at 100% load.

F35: Cooling fan operation selection

In order to increase lifetime, the cooling fan can be set to operate only when inverter is running. F35 $=0$ (Initial setting) : Operates only when inverter is running (Continues operation for 1 minute after inverter is stopped.)
$=1 \quad:$ Operates with power ON.

F36: Multi-function input selection S2
F37: Multi-function input selection S3
F38: Multi-function input selection S4
F39: Multi-function input selection S5

- Multi-function input terminal S2 to S5 functions can be changed when necessary by setting constants F36 to F39 respectively. The same value cannot be set to different constant settings.
- The setting value and reference is as below.

Setting	Name	Description	Ref.
0	FWD/REV run command	Setting enabled only for F37 (terminal S3)	59
2	REV run (2-wire sequence selection)		59
3	External fault (a contact input)	Inverter stops by external fault signal input. Digital operator display is "EF \square ".	-
4	External fault (b contact input)		-
5	Fault reset	Resets the fault. Fault reset not effective with the run signal ON.	-
6	Multi-step speed reference 1		53
7	Multi-step speed reference 2		53
8	Multi-step speed reference 3		53
10	JOG command		54
11	Accel/decel time select		51
12	External base block (a contact input)	Motor coast to a stop by this signal input. Digital operator display is bb (blinking)	-
13	External base block (b contact input)		-
14	Search command from maximum frequency	Speed search reference signal	59
15	Search command from set frequency		59
16	Accel/decel hold command		60
17	LOCAL/REMOTE selection		60
18	Communication/ control circuit terminal selection		60
19	Emergency stop fault (a contact input)	Inverter stops by emergency stop signal input according to stopping method selection(F04). When frequency coasting to a stop (F04 is set to 1) method is selected, inverter coasts to a stop according to decel time setting 2 (F19). Digital operator display is "STP" (lit at fault, blinking at alarm)	-
20	Emergency stop alarm (a contact input)		-
21	Emergency stop fault (b contact input)		-
22	Emergency stop alarm (b contact input)		-
34	UP/DOWN command	Setting enabled only for F39 (terminal S5)	61
35	Self-test	Setting enabled only for F39 (terminal S5)	62

- Initial Setting

No.	Terminal	Initial Setting	No.	Terminal	Initial Setting
F36	S2	2	F38	S4	3
F37	S3	5	F39	S5	6

Terminal Function at 3-wire Sequence Selection (F37=0)
When 0 is set at the terminal S3 (F37),terminal S1, S2 and S3 become the following command.
S1: Run command
S2: Stop command
S3: FWD/REV run command

Restarts A Coasting Motor without Stopping Speed Search Command (F36~F39=14 or 15)

After inputting restarting speed search command in a coasting motor, inverter will stop output for a while (Min. Base Block time), then it will start to execute speed search.

Set multi-function input terminal (F36~F39) to
14 (search command from "maximum output frequency")
15 (search command from "set frequency")

Holding Accel/Decel Temporarily (F36~F39=16)

When the stop command is input during accel/decel prohibition command input, accel/decel hold is released and operation ramps to stop.
Set multi-function input selection (F36to F39) to 16 (accel/decel prohibit).

* When the FWD (REV) run command is input along with the accel/decel hold command,the motor does not operate. However, when frequency reference lower limit (F31) is set greater than or equal to min. output frequency (F14), the motor operates at frequency reference lower limit.

LOCAL/REMOTE Selection (F50~F56=17)

Select operation reference either by the digital operator or by multi-function input terminals.
LOCA/REMOTE select is available only during stop.
Open: Run according to the setting of run command selection (F02) or frequency reference selection (F03).
Closed: Run by frequency reference and run command from the digital operator.
(Example) Set F02 $=1, \mathrm{~F} 03=2, \mathrm{~F} 07=0$.
Open: Run by frequency reference from multi-function input(terminal FR, PS) and run command from multi-function input terminals S1 to S5.
Closed: Run by potentiometer frequency reference and run command from the digital operator.

Communication/Multi-function Input Terminal Selection Input (F50~F56=18)
Operation can be changed from communication command, or from multifunction input terminal or digital operator command.
Run command from communication and frequency reference are effective when multi-function input terminal for this setting is "Closed."
Run command in LOCAL/REMOTE mode and frequency reference are effective when "Open."

O UP/DOWN Command (F39=34)

With the FWD (REV) run command entered, accel/decel is enabled by inputting the UP or DOWN signals to multi-function input terminals $S 4$ and $S 5$ without changing the frequency reference, so that operation can be performed at the desired speed.
When UP/DOWN commands are specified by F39, any function set to F38 becomes disabled; terminal S4 becomes an input terminal for the UP command and terminal S5 for the DOWN command.

Multi-function input terminal S4 (UP command)	Closed	Open	Open	Closed
Multi-function input terminal S5 (DOWN command)	Open	Closed	Open	Closed
Operation status	Accel	Decel	Hold	Hold

$\mathrm{U}=\mathrm{UP}($ acceleration $)$ status
D=DOW N(deceleration)status
$\mathrm{H}=\mathrm{HOLD}$ (constant speed)status
U $1=$ UP status,clamping at upper limit speed
Notes:
D1=DOW N status,clamping at lower limit speed

1. When UP/DOWN command is selected, the upper limit speed is set.

Upper limit speed $=$ Maximum output frequency (F09)
\times Frequency reference upper limit F30)/100
2. Lower limit value is either minimum output frequency (F14) or frequency reference lower limit (F31) (whichever is larger.)
3. When the FWD (REV) run command is input, operation starts at the lower limit speed without an UP/DOWN command.
4. If the jog command is input while running by the UP/DOWN command, the jog command has priority.
5. Multi-step speed reference 1 to 3 is not effective when UP/DOWN command is selected. Multi-step speed reference is effective during running in hold status.
6. When " 1 " is set for HOLD output frequency memory selection (F62), output frequency can be recorded during HOLD.

F62 Setting	Description
0 (Initial setting)	Output frequency is not recorded during HOLD.
1	When HOLD status is continued for 5 seconds or longer, the output frequency during HOLD is recorded and the inverter restarts at the recorded frequency.

EI-450 is provided with a function to perform self-diagnosis for operation check of the serial communication I/F circuit. This function is called self-test. In the self-test, connect the sending terminal with the receiving terminal in the communication section. It assures if the data received by EI-450 is not being changed. It also checks if the data can be received normally.

Carry out the self-test in the following procedure.

1. Turn ON the EI-450 power supply. Set constant F39 to 35 (self-test).
2. Turn OFF the EI-450 power supply.
3. Make the following wiring with the power supply turned OFF.
4. Turn ON the EI-450 power supply.

Normal operation: Operator displays frequency reference value.
Faulty operation: Operator displays "CE" fault; signal is turned "ON" and inverter ready. Signal is turned OFF

F40: Multi-function output selection

Using Output Signal (F40)

Multi-function output terminal MA, MB functions can be changed by setting constants F40.

- Terminal MA, MB functions : Set to F40

Setting	Name	Description	Ref.
0	Fault	Closed when inverter fault occurs.	-
1	In operation	Closed when either FWD/REV command is input or voltage is output from the inverter.	-
2	Agreed frequency	Closed when setting frequency agrees with inverter output frequency.	64
3	Zero speed	Closed when inverter output frequency is less than minimum output frequency.	-
4	Frequency detection 1	Output frequency \geq frequency detection level (F58)	72
5	Frequency detection 2	Ouput frequency \leq frequency detection level (F58)	72
6	Overtorque detection (a contact output)	-	73
7	Overtorque detection (b contact output)	-	73
10	Minor fault(alarm)	Closed when the alarm is indicated.	-
11	Base blocked	Closed when the inverter output is shut off.	-
12	LOCAL operation mode	Closed when "LOCAL" is selected by LOCAL/REMOTE selection.	-
13	Inverter operation ready	Closed when inverter fault is not detected, and operation is ready.	-
14	Fault restart	Closed during fault retry	-
15	In UV	Closed when undervoltage is detected.	-
16	In reverse run	Closed during reverse run.	-
17	In speed search	Closed when inverter conducts speed search.	-
18	Data output from communication	Operates multi-function output terminal independently from inverter operation by MODBUS communication.	76

- Initial Setting of Multi-Function Output Terminal

Constants No.	Terminal	Initial setting
F40	MA, MB	1 (Inverter Run)

Frequency Agreed Signal ($\mathbf{F 4 0}=\mathbf{2}$)

F41: Analog frequency reference gain

F42: Analog frequency reference bias
F43: Analog refquency reference filter time constant

Adjusting Speed Setting Signal

The relationship between the analog input signal and internal (terminal "FR") frequency reference can be set by parameters F41 and F42.

Frequency reference gain (F41)

The max. frequency reference (F09) provided when analog input is max. can be set in units of 1%. (Max. output frequency $\mathrm{F} 09=100 \%$)
Factory setting: 100\%

Frequency reference bias (F42)

The frequency reference provided when analog input is $0 \mathrm{~V}(4 \mathrm{~mA}$ or 0 mA$)$ can be set in units of 1%. (Max. output frequency $\mathrm{F} 09=100 \%$)
Factory setting: 0\%

Example Setting:
(1) To operate the inverter with frequency reference of 0% to 100% at 0 to 5 V input.

Gain F41 $=200 \%$
Bias F42 $=0 \%$

(2) To operate the inverter with frequency reference of 50% to 100% at 0 to 10 V input.

Gain F41 $=100 \%$
Bias F42 $=50 \%$

F44: Monitor item selection

O Using Frequency Meter or Ammeter

Selects to output either output frequency or output current to analog output terminals $\mathrm{AM}-\mathrm{AC}$ for monitoring.

F44 setting	Description
0 (Initial setting)	Output frequency
1	Output current

In initial setting, analog voltage of approx. 10 V is output when output frequency (output current) is 100%.

F45: Monitor gain

Calibrating Frequency Meter or Ammeter
Used to adjust analog output gain

Example: Set the analog output voltage at 100% of output frequency (output current).
Frequency meter displays 0 to 60 Hz at 0 to $3 \mathrm{~V} .10 \times \mathrm{F} 45$ setting (0.30) $=3 \mathrm{~V}$.

F46: Carrier frequency

Set inverter output transistor switching frequency (carrier frequency F46).

F46 Setting	Carrier frequency	Metallic noise from motor	Noise current leakage
7	12 fout (HZ)	Higher Not audible	Smaller
8	24 fout (HZ)		
9	36 fout (HZ)		4
1	2.5 (kHZ)		
2	5.0 (kHZ)		\downarrow
3	7.5 (kHZ)		Larger
4	10.0 (kHZ)		

Setting values 7,8 , or 9 multiplies output frequency according to output frequency value.
F46=7

$F 46=8$

$F 46=9$

Factory setting varies according to inverter capacity.

Voltage Class (V)	Capacity (HP)	F46 Initial setting		Max. continuous ouput current (A)	Reduced current at carrier frequency 10kHZ
		Setting	Carrier Frequency		
220 V 3-phase Single-phase	1/4	4	10 kHZ	1.6A	
	1/2	4	10 kHZ	3.0A	
	1	4	10 kHZ	5.0A	
	2	3	7.5 kHZ	8.0A	7.0A
	3	3	7.5 kHZ	11.0A	10.0A
	5	2	5 kHZ	17.5A	16.5A
	$71 / 2$	2	5 kHZ	25A	23A
$\begin{gathered} 440 \mathrm{~V} \\ \text { 3-phase } \end{gathered}$	1	3	7.5 kHZ	3.4A	3.0A
	2	3	7.5 kHZ	4.8A	4.0A
	3	3	7.5 kHZ	5.5A	4.8A
	5	2	5 kHZ	8.6A	8.1A
	$71 / 2$	2	5 kHZ	14.8A	14A
	10	2	5 kHZ	18A	17A

(1) Reduce continuous output current when changing carrier frequency to 4 (10 kHZ) for the 220 V class, 2 HP or more and 440 V class inverters. Refer to the table above for the reduced current.
(2) If the wiring distance is long, reduce the inverter carrier frequency as described below.

Wiring distance between inverter and motor	Up to 50 m	Up to 100 m	More than 100 m
Carrier frequency (F46 setting)	10 kHZ or less $(\mathrm{F} 46=1,2,3,4,7,8$, $9)$	5 kHZ or less (F46=1,2,7, 8,9$)$	2.5 kHZ or less (F46=1, 7, 8, 9)

(3) Carrier frequency is automatically reduced to 2.5 kHz when reducing carrier frequency selection at low speed (F75) is set to 1 and output frequency $\leqq 5 \mathrm{~Hz}$; Output current $\geqq 110 \%$.
(4) F75 Factory Setting: 0 (Disabled).

F47: Operation selection after momentary power loss

Automatic Restart after Momentary Power Loss (F47)

F47 Setting	Description
0 (Initial setting)	Continuous operation after momentary power loss not provided
1^{*}	Continuous operation after power recovery within momentary power loss ridethru time 0.5 s
2	Continuous operation after power recovery (Fault output not provided)

* Hold the operation signal to continue the operation after recovery from a momentary power loss.

F48: Fault reset

Continuing Operation by Automatic Fault Reset (F48)

Set the inverter to restart and reset fault detection after a fault OC(overcurrent), GF(ground fault), OV (overvoltage) occurs. The number of self-diagnosis and retry attempts can be set at F48 up to 10 .

The number of retry attempts are cleared to 0 in the following cases :
(1) If no other fault occurs within 10 minutes after retry
(2) When the fault reset signal is ON after the fault is detected
(3) Power supply is turned OFF

F49: Jump frequency 1
 F50: Jump frequency 2
 F51: Jump frequency width

Jump Frequencies (F49~F51)

This function allows the prohibition or "jumping" of critical frequencies so that the motor can operate without resonance caused by machine systems.
Jump Frequency 1 (F49) Jump Frequency 2 (F50) Jump Bandwidth (F51)

*When the setting of F49き F50 does not satisfy above condition, Err would be displayed on digital operator for one second and return to previous content before setting.

F52: DC injection braking current
 F53: DC injection braking time at stop
 F54: DC injection braking time at start

DC Injection Braking Current (F52)

Set DC injection braking current in units of 1%. (Inverter rated current=100\%)

O DC Injection Braking Time at Stop (F53)

Set DC injection braking time at stop in units of 0.1 s .
When the setting is $0, \mathrm{DC}$ injection braking is not performed but inverter output is shut OFF (Base Block) at the timing of DC injection braking start.

When coasting to a stop is specified in stopping method selection (F04=1), DC injection braking at stop does not operate.

O DC Injection Braking at Start (F52, F54)
Restarts a coasting motor after stopping it. Set the DC injection braking time at start in F54 in units of 0.1 second. Constant F52 is DC injection braking current value. When the setting of F54 is " 0 ", DC injection braking is not performed and acceleration starts from the minimum output frequency. When F52 is set to 0 , acceleration starts from the minimum output frequency after the baseblocking for F54 setting time.

F55: Stall prevention (current limit)during decel

Stall Prevention during Deceleration (F55)

To prevent overvoltage during deceleration, the inverter automatically extends the deceleration time according to the value of main circuit DC voltage. When using an optional braking resistor, set F55 to 1.

F55 Setting	Stall prevention during deceleration		
0	(Initial setting)	Provided	1
:---:		Not Provided	
:---			
(when braking resistor			
mounted)			

F56: Stall prevention (current limit)during accel F57: Stall prevention (current limit)during running

Preventing Motor from Stalling (Current Limit)

Automatically adjusts the output frequency and output current according to the load to continue operation without stalling the motor.

- Stall Prevention (Current Limit) Level during Acceleration (F56)

Stall prevention (current limit) level during acceleration (F56) sets the stall prevention (current limit) level during acceleration in units of 1%. (Inverter rated current $=100 \%$) ※ Factory setting: 170%. A setting of 200% disables the stall prevention (current limit) during acceleration.
During acceleration, if the output current exceeds the value set for F56, acceleration stops and frequency is maintained. When the output current goes down to the value set for F56, acceleration starts.

*R elease width (hy steresis) of stall prevention during accel is approx.5\% of inverter rated current.
\#Stops the acceleration to prevent the motor from stalling.

In the constant output area [output frequency \geqq max. voltage output frequency (F11)], following equation automatically decreases the stall prevention (current limit) level during acceleration.

Stall prevention (current limit) level during accel in constant output area

- Stall Prevention (Current Limit) Level during Running (F57)

Sets the stall prevention (current limit) level during running in units of 1%.
(Inverter rated current $=100 \%$)
※ Factory setting: 160%. A setting of 200% disables the stall prevention (current limit) during running.
If stall prevention action current at agreed speed exceeds the value set for F57 for longer than 100 msec , deceleration starts.

*Release width (hy steresis) of stall prevention during accel is approx.5\% of inverter rated current.
\#D ecreases frequency to prevent the motor from stalling.

F58: Frequency detection

Frequency Detection (F58)

Frequency detection is effective when output terminal function selection F40 is set to 4 or 5.

- Frequency Detection 1
(Output frequency \geqq Frequency detection level F58)
(F40 is set to 4)

- Frequency Detection 2
(Output frequency \leq Frequency detection level F58)
(F40 is set to 5)

F59: Overtorque detection
F60: Overtorque detection level
F61: Overtorque detection time

F59 Setting	Description
0 (Initial setting)	Overtorque detection not provided
1	Detected during speed agree, (alarm).Operation continues after detection.
2	Detected during speed agree (fault). Operation stops during detection..
3	Detected during running. Operation continues after detection. (alarm).
4	Detected during running. Operation stops during detection. (fault).

(1) To detect overtorque at accel/decel, set to 3 or 4 .
(2) To continue the operation after overtorque detection, set to 1 or 3 . During detection, the digital operator displays "oL3" alarm.
(3) To halt the inverter by a fault at overtorque detection, set to 2 or 4 . At detection, the digital operator displays "oL3" fault .

Overtorque Detection Level (F60)

Sets the overtorque detection current level in units of 1%. (Inverter rated current $=100 \%$). Factory setting: 160\%

Overtorque Detection Time (F61)

If the time when motor current exceeds the overtorque detection level (F098) is longer than overtorque detection time (F099), the overtorque detection function operates.
Factory setting : 0.1 sec .

O Torque Detection:

If an excessive load is applied to the machine, output current increase can be detected to output alarm signals to multi-function output terminals (MA, MB).
To output an overtorque detection signal, set output terminal function selection F040 to "overtorque detection" [Setting: 6 (a contact) or 7 (b contact)].

*Overtorque detection release width (hysterisis) is set at approx. 5\% of inverter rated current.

F62: Memory selection of hold output frequency

F62 Setting	Description
0 (Initial Setting)	Output frequency is not recorded during HOLD.
1	When HOLD status is continued for 5 seconds or longer, the output frequency during HOLD is recorded and the inverter restarts at the recorded frequency.

Please refer to page 62.

F63: Torque compenstaion gain

Full-Range Automatic Torque Boost

Motor torque requirement changes according to load conditions. Full-range automatic torque boost adjusts voltage of V/F pattern according to the requirement. EI-450 automatically adjusts the voltage during constant-speed operation as well as acceleration. The required torque is calculated by the inverter and this enasures triples operation and energy-saving effects.

Output voltage a Torque compensation gain (F63) \times Required torque

Operation
Normally, no adjustment is necessary for torque compensation
Gain(F63). When the wiring distancebetween the inverter
and the motor is long, or when the motorgenerates vibration,
change the automatic torque boost gain.
In these cases, set the V / F pattern (F09 to F15).
Factory setting F63=1.0

F64: Motor rated slip

F65: Motor no-load current
F66: Slip compensation gain
F67: Slip compensation primary delay time

Decreasing Motor Speed Fluctuation

O Slip Compensation:

As the load becomes larger, motor speed is reduced and motor slip value is increased. The slip compensating function controls the motor speed at a constant value even if the load varies.
When inverter output current is equal to the motor rated current F32, the compensation frequency is added to the output frequency.

Compensation frequency $=$ Motor rated slip (F64)
$\times \frac{\text { Output current }- \text { Motor no-load current (F65) }}{\text { Motor rated current (F32) - Motor no-load current (F65) }}$
$\times \quad$ Slip compensation gain (F66)
Related constants

Constants No.	Name	Unit	Setting range	Initial setting
F32	Motor rated current	0.1 A	$0 \sim 120 \%$ of inverter rated current	$*$
F64	Motor rated slip	0.1 Hz	$0.0 \sim 20.0 \mathrm{HZ}$	$*$
F65	Motor no-load current	1%	$0 \sim 99 \%(100 \%=$ Motor rated current $)$	$*$
F66	Slip compensation gain	0.1	$0.0 \sim 2.5$	0.0
F67	Slip compensation primary delay time	0.1 s	When 0.0 s is set, delay time becomes 2.0s	2.0 s

* Differs depending on inverter capacity.

Notes: 1. Slip compensation is not performed at output frequency < minimum output frequency (F14).
2. Slip compensation is not performed during regeneration.
3. Slip compensation is not performed when motor rated current (F32) is set to 0.0A.

F68: Timeover detection selection

F69: Setting unit selection of communications frequency reference/frequency monitor
F70: Slave address
F71: Baud rate selection
F72: Parity selection
F73: Send waiting time delay
F74: RTS control

MODBUS Communications

MODBUS is composed of a single MASTER (PLC) and SLAVES (1 to 32 EI-450 units). Communication between MASTER and SLAVE (serial communication) is controlled according to the MASTER program with the MASTER initiating communication and the SLAVE responding.
The MASTER sends a signal to one SLAVE at a time. Each SLAVE has a preregistered address No., and the MASTER specifies the number and conduct signal communications. The SLAVE receives the communications to carry out designated functions and reply to the MASTER.

Communications Connection Terminal:

Use the following $\mathrm{S}+$, $\mathrm{S}-, \mathrm{R}+$ and R - terminals for MODBUS communications. Change the termination resistor as shown below.
RS-422 communications $\cdots \cdots$ Turn ON S2 ON/OFF
RS-485 communications $\cdots \cdots$ Turn ON S2 ON/OFF switch of only the inverter at termination viewed from the PLC.
Note:

1. Separate the wiring for communication from the main circuit wiring or other power lines.
2. Use shielded cables for communication wiring; connect the shielded sheath to the ground terminal.

Procedure for Communications with PLC:

1. Connect the communication cable between the PLC and the EI-450 with the power supply turned OFF.
2. Turn the power ON.
3. Set the constants (F68 to F74) required for communication by using the digital operator.
4. Turn the power OFF once to verify that the digital operator displays have been completely erased.
5. Turn the power ON again.
6. Communications with the PLC starts.

Setting Constants Necessary for Communication:
Communication related constants must be set for PLC communication. Constants F68 to F74 cannot be set by communication. Always set them before performing communication.

$\begin{gathered} \text { Constant } \\ \text { No. } \end{gathered}$	Name	Description	Initial setting
F02	Operation reference selection	2 : MODBUS communication control	0
F03	Frequency reference selection	6 : MODBUS communication (Register No. 0002H)	0
F68	Timeover detection selection (Timeover: 2 sec .)	0 : Timeover detection (coast to a stop) 1 : Timeover detection (decelerates to a stop with speed reduction time 1) 2 : Timeover detection(decelerates to a stop with speed reduction time 2) 3 : Timeover detection(continuous operation, warning display) 4: Timeover detection not provided	0
F69	MODBUS frequency reference and frequency monitor unit	$\begin{aligned} & 0: 0.1 \mathrm{~Hz} \\ & 1: 0.01 \mathrm{~Hz} \\ & 2: 30000 / 100 \%(30000=\text { Max. output frequency }) \\ & 3: 0.1 \% \end{aligned}$	0
F70	MODBUS slave address	Setting range: $0 \sim 32$ (0 : The slave does not respond to the command from the master when set to 0)	0
F71	MODBUS BPS selection	$\begin{aligned} & 0: 2400 \mathrm{bps} \\ & 1: 4800 \mathrm{bps} \\ & 2: 9600 \mathrm{bps} \\ & 3: 19200 \mathrm{bps} \end{aligned}$	2
F72	MODBUS parity selection	0 : even parity 1 : odd parity 2 : no parity	0
F73	Send waiting time	Setting range : $10 \mathrm{~ms} \sim 65 \mathrm{~ms}$ Setting unit : 1 ms	10ms
F74	RTS control	0 : RTS control 1 : No RTS control(RS-422A : 1 to 1 communication)	0

O Message Format:
Please refer to EI-450 INVERTER MODBUS RTU Instruction Manual for details of message format.

O Communication Self Test (F39=35):
EI-450 is provided with a function to perform self-diagnosis for operation check of the serial communication I/F circuit. This function is called self-test. In the self-test, connect the sending terminal with the receiving terminal in the communication section. It assures if the data received by EI-450 is not being changed. It also checks if the data can be received normally.

Carry out the self-test in the following procedure.

1. Turn ON the EI-450 power supply. Set constant F39 to 35 (self-test).
2. Turn OFF the EI-450 power supply.
3. Make the following wiring with the power supply turned OFF.
4. Turn ON the EI-450 power supply.

Normal operation: Operator displays frequency reference value.
Faulty operation: Operator displays "CE" fault; signal is turned "ON" and inverter ready. Signal is turned OFF

F75: Carrier frequency at low speed

Please refer to page 68.

F76: Constants COPY function selection
 F77: Constants READ prohibit selection

Using Constant Copy Function.

Constant Copy Function:

RCU-450P is an optional digital operator of EI-450 and it can store constants for one inverter. A backup power supply is not necessary since EEPROM is used.
Constant copy function is possible only for the inverters with same product series, (it is impossible to copy constants between EI- $450 \Longleftrightarrow$ EI-500), same power supply specifications (220 V class or 440 class), same motor capacity.

The prohibition of the digital operator RCU-450P reading of constants from the inverter can be set at $\mathrm{F} 77=0$, factory setting. The constant data cannot be changed when this constant is set.

During COPY, if there is any fault occuring, PRGM Indicator blinks and constants copy function continues operation.

Constant Copy Function Selection (F76):

Depending on the setting of F76 for constant copy function selection, the following functions are available:

- Read all the constants from the inverter (READ) and store them in EEPROM in the digital operator RCU-450P.
- Copy the constants stored in the digital operator RCU-450P to the inverter (COPY).
- Verify that the constants in the digital operator RCU-450P and the constants in the inverterer are the same (VERIFY).
- Display the model number, the maximum applicable motor capacity and the voltage class of the inverter that has the constants stored in the digital operator.

Constant No.	Name	Unit	Setting range	Initial setting
F76			rdy: READY rEd: READ	
Constant copy function selection	-	Cpy: COPY vFy: VERIFY vA:Inverter capacity display	rdy	

Prohibiting Constant Read Selection (F77):

Selects this function to prevent accidentally overwriting the constants stored in EEPROM or in the digital operator RCU-450P. Reading is not possible when F77 is set to 0 . The constant data stored in the digital operator are safe from accidental overwriting. When reading is performed while F77 is set to 0 , "PrE" will blink. Press DSSL or or and return to constant No. display.

Constant No.	Name	Unit	Setting range	Initial setting
F77	Constant read prohibit selection	1	0: READ prohibited 1: READ allowed	0

\bigcirc READ Function (READ):

Reads out the constants in batch from the inverter and stores them in EEPROM inside the digital operator RCU-450P. When the read-out is executed, the previously stored constants data in the EEPROM are cleared and replaced with the newly entered constants.

1. $\mathrm{F} 01=1$; Enable the setting of F01 to F79 for reading and writing.
2. $F 77=1$; Allow the read-out and write-in of digital operator RCU-450P.
3. F76= "Constants read-out"; store constants from the inverter in EEPROM inside the digital operator RCU-450P.
4. F77=0; Prohibit digital operator RCU-450P read-out.

Example: Copy the constants from inverter to RCU-450P:

	Description		Operator Display
F01~F79 Setting	Press DSPL key and PRGM ON	F01	(Or other constants)
	Press ENTER key to display content	0	(Display)
	Press $\mathbb{\triangle}$ or \mathbb{V} key to 1 Press ENTER key, write it in		(Blinking)
		F01	(Display for 1 second) (Display current constant)
F77 set as READ allowed	Press \triangle or \mathbb{V} key to F77	F77	
	Press ENTER key to display content	0	(Display)
	Press $\widehat{\text { A }}$ or \triangle key to 1		(Blinking)
	Press ENTER key, write it in		(Display for 1 second)
		F77	(Display current constant)
	Press \triangle or \mathbb{V} key to F76	F76	
F76 Function selection READ(rEd) execution	Press ENTER key to display content	rdy	(Display)
	Press \triangle or $\mathbb{\square}$ key to rEd	rEd	(Display)
	Press ENTER key	rEd	(Execute READ, Blinking)
		End	(READ completed)
F77set as READ prohibited	Press DSPL or ENTER key	F76	(Display current constant)
	Press \triangle or key to F77	F77	
	Press ENTER key to display content		(Display)
	Press ${ }^{\text {A }}$ or ${ }^{\text {Press ENTER key to } 0}$		(Blinking)
	Press ENTER key to display content		(Display for 1 second)
		F77	(Display current constant)

COPY Function（COPY）：

Writes the constants stored inside the digital operator RCU－450P in batch to inverter．
Write－in is possible only for the inverters with same product series，power supply specifications．When satisfying the above condition，＂VAE＂will appear when the capacity
 function．
Following constants are not written if the inverter capacity is different．

Constant No．	Name
F09～F15	V／F Setting
F32	Motor rated current
F46	Carrier frequency reference
F64	Motor rated slip
F65	Motor no－load current

＂Write－in＂Function Steps：

1． $\mathrm{F} 01=1$ ；
2．F76＝＂Cpy＂
A setting range check and matching check for the written－in constants are executed after the constants are written from the digital operator to the inverter．If any constant error is found， the written constants are discarded and the constants stored before writing are restored． During write－in，CPy blinks and End shows when it is completed．

Example：Write the constants in RCU－450P in the inverter．

Description		Operator Display	
F01～F79 Setting	Press DSPL key and PRGM ON	F01	（Or other constants）
	Press ENTER key to display content		（Display）
	Press ENTER key，write it in		（Blinking）
			（Display for 1 second）
		F01	（Display current constant）
F76 Function selection COPY（CPy）execution	Press \square ヘ or \square key to F76 Press ENTER key to display content Press \square or \square key to CPy Press ENTER key	F76	
		rdy	（Display）
		CPy	（Display）
		CPy	（Execute COPY，Blinking）
		End	（COPY completed）
	Press DSPL or ENTER key	F76	（Display current constant）

VERIFY Function（VERIFY）：

Collates the constants stored in the digital operator RCU－450P with the constants in the inverter．As well as write－in，VERIFY is possible only for the inverters with same product series，power supply specifications．When the constants stored in the digital operator correspond to those in the inverter，＂End＂is displayed．If they do not respond，an umatched constant No．or a constant value is displayed．

" VERIFY" Function Steps:

1. $\mathrm{F} 01=1$;
2. F76= "vFy";
3. If the constants match, operator will show " End"
4. If the constants do not match, operator will display " unmatched constant No."
a. Press $\xlongequal{\frac{\text { DATA }}{\text { EIR }}}$ to display "constant value in the inverter"
b. Then press $\frac{\text { DTTA }}{\text { DNIR }}$ to display "constant value in the digital operator"
c. Then press
to continue to display the next "unmatched constant No."
d. Finally, display " End" and it is done.

Example: Verify the constants in RCU-450P and in the inverter

	Description		Operator Display
F01~F79 Setting	Press DSPL key and PRGM ON	F01	(Or other constants)
	Press ENTER key to display content	0	(Display)
	Press \qquad or \qquad key to 1 Press ENTER key, write it in		(Blinking)
		$\begin{aligned} & 1 \\ & \mathrm{~F} 01 \end{aligned}$	(Display for 1 second) (Display current constant)
	Press © or \ key to F76	F76	
F76 Function selection VERIFY(vFy) execution	Press ENTER key to display content	rdy	(Display)
	Press \triangle or \mathbb{V} key to vFy	vFy	(Display)
	Press ENTER key	vFy	(Execute VERIFY, Blinking)
Unmatched constant value Constant in inverter Constant in RCU-450P Continue Verify		F01	(Blinking)
	Press ENTER key	60.0	(Blinking)
	Press ENTER key	50.0	(Blinking)
	Press A key	vFy	(Execute VERIFY, Blinking)
		End	(VERIFY completed)
	Press DSPL or ENTER key	F76	(Display current constant)

While display constant setting value or unmatched value, $\frac{\operatorname{sex}}{\mathrm{NSSERE}}$ key can stop verify and display "End". Current constant can be displayed by pressing DSPL key or ENTER key.

O Inverter Capacity:

Reads the voltage class and maximum applicable motor capacity stored in digital operator RCU-450P on the inverter.

Example: Read the voltage class and maximum applicable motor capacity stored in digital operator RCU-450P

	Description	Operator Display
F01~F79 Setting	Press DSPL key and PRGM ON	F01 (Or other constants)
	Press ENTER key to display content	$0 \quad$ (Display)
	Press \qquad or \qquad key to 1	1 (Blinking)
		1 (Display for 1 second)
		F01 (Display current constant)
	Press or $\mathbb{\triangle}$ key to F76	F76
F76 Function selection Inverter capacity reading(vA) execution	Press ENTER key to display content	rdy (Display)
	Press $\mathrm{A}^{\text {d }}$ or key to vA	vA (Display)
	Press ENTER key	20.7 (Display 20.7 capacity)
	Press DSPL or ENTER key	F76 (Display current constant)

Capacity	$\underline{\mathbf{2}}$	$\underline{\mathbf{0 . 7}}$		
Display:	$2: 220 \mathrm{~V}$	$0.2=0.2 \mathrm{KW}(1 / 4 \mathrm{HP})$,	$0.7=0.7 \mathrm{KW}(1 \mathrm{HP})$,	$3.7=3.7 \mathrm{KW}(5 \mathrm{HP})$
	$4: 440 \mathrm{~V}$	$0.4=0.4 \mathrm{KW}(1 / 2 \mathrm{HP})$,	$1.5=1.5 \mathrm{KW}(2 \mathrm{HP})$,	$5.5=5.5 \mathrm{KW}(7.5 \mathrm{HP})$
			$2.2=2.2 \mathrm{KW}(3 \mathrm{HP})$,	$7.5=7.5 \mathrm{KW}(10 \mathrm{HP})$

\bigcirc Inverter Model No.:

Read the model No. stored in the digital operator RCU-450P on the inverter.
Example: Read the model No. stored in the digital operator RCU-450P on the inverter.

	Description		Operator Display
F01~F79 Setting	Press DSPL key and PRGM ON	F01	(Or other constants)
	Press ENTER key to display content	0	(Display)
	Press \qquad or \square key to 1		(Blinking)
	Press	1	(Display for 1 second)
		F01	(Display current constant)
F76 Function selection inverter model no. reading execution (Sno)	Press \triangle or \triangle key to F76	F76	
	Press ENTER key to display content	rdy	(Display)
	Press \triangle or \mathbb{V} key to Sno	Sno	(Display)
	Press ENTER key	450	(Display EI-450 inverter)
	Press DSPL or ENTER key	F76	(Display current constant)

Digital Operator (RCU-450P) Display and User Instruction

Display	Description	Solution
Ead	Display: Constants COPY selection ready.	
	Display: Constants READ selected. Blinking: Execute READ.	
50 E	Display: Constants COPY selected. Blinking: Execute COPY.	
	Display: Constants VERIFY selected Blinking: Execute VERIFY.	
Hi	Display: Inverter capacity reading selected.	
998	Display: Inverter model no. reading selected.	
E98	Display: READ, COPY, VERIFY completed.	
FEE	Blinking: F77 set as READ prohibited. Constants READ selected.	Set F77=1 to execute READ.
	Blinking: During READ, power supply of main circuit is too low.	Proper power supply to execute READ.
$E E$	Blinking: Check Sum of digital operator RCU-450P is at fault.	Execute READ and VERIFY.
	Blinking: COPY function between inverters of different models.	Use the inverter of the same capacity.
95	Blinking: No recorded constants in digital operator	Execute READ.
	Blinking: READ/VERIFY function between inverters of different voltage classes.	Use the the inverter of the same voltage class.
$E E$	Blinking: During COPY, power supply of main circuit is too low.	Proper power supply to excute COPY.

Display	Description	Solution
Blinking: Check sum of invereter is at fault.	Return to initial setting or replace the inverter unit.	
Blinking: VERIFY function between inverters of different capacities.	Press ENTER key to stop VERIFY. After VERIFY, press STOP key to reset.	
	Blinking: Fault between inverter and operator.	Check the communication between inverter and operator. Re-execute READ/COPY.

CHAPTER 5 MAINTENANCE AND INSPECTION

- Periodical Inspection

Periodically inspect the inverter as described in the following table to prevent accidents and to ensure high performance with high-reliability.

Items for Checks

Location to Check	Check for	Solution
Terminals, unit mounting screws, etc.	Connection hardware is properly seated and securely tightened	Properly seated and tighten hardware.
Heatsink	Built up dust, dirt, and debris	Blow with dry compressed air: $39.2 \sim 58.8 \times 10^{4} \mathrm{~Pa}(4 \sim$ $\left.6 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ pressure.
Printed circuit board	Accumulation of conductive material or oil mist	Blow with dry compressed air: $39.2 \sim 58.8 \times 10^{4} \mathrm{~Pa}(4 \sim$ $\left.6 \mathrm{~kg} / \mathrm{cm}^{2}\right)$ pressure. If dust or oil cannot be removed, replace the inverter unit.
Power elements and smoothing capacitor	Abnomral odor or discoloration	Replace the inverter unit.
Cooling fan	Abnormal noise or vibration Cumulative operation time exceeding 20,000 hours	Replace the cooling fan.

Part Replacement
Inverter's maintenance periods are noted below. Keep them as reference.
Part Replacement Guides

Part	Standard Replacement Period	Replacement Method
Cooling fan	$2 \sim 3$ years	Replace with new part.
Smoothing capacitor	5 years	Replace with new part.
Breaker relays	-	Determine need by inspection.
Fuses	10 years	Replace with new part.
Aluminum capacitors on PCBs	5 years	Replace with new board.

Usage conditions are as follows:

- Ambient temperature: Yearly average of $30^{\circ} \mathrm{C}$
- Load factor: 80% max.
- Operating rate: 12 hours max. per day

CHAPTER 6 FAULT DIAGNOSIS

- Protective and Diagnostic Functions

This section describes the alarm and fault displays, the fault conditions, and the corrective actions to be taken if the EI-450 malfunctions.

Inverter alarms are classified into alarm display and fault display.
Alarm display: When a minor fault occurs in the inverter, the Digital Operator flashes the display. In this case, the operation is continued, and restored automatically as soon as the cause is removed. Multi-function output can output the minor fault status to external devices.
Fault display: When a major fault occurs in the inverter, the protective function operates, and the Digital Operator lights the display and shuts off the output to stop the inverter. The fault can be output as a fault output to the external devices by multi-function output.

To reset the fault, use $\underbrace{\frac{\text { SROP }}{\text { RSEI }}}$ key of Digital Operator or cycle the power after taking the second corrective action.
※ Status Indicator Description:

- Alarm Display:

Alarm Display (Digital Operator)				Explanation	Cause and Corrective Action
RCU-450(P)	RCU-450(P)				
	RCUS-450		Inverter		
7-segment Display	Status Indicator				
	$\begin{aligned} & \hline \text { RUN } \\ & \text { LED } \end{aligned}$	$\begin{aligned} & \hline \text { ALARM } \\ & \text { LED } \end{aligned}$			
	溥 Long Blinking	$\rightarrow-$ Long Blinking	Warning Fault contacts do not change state.	UV (Main circuit low voltage) Main circuit DC voltage drops below the low-voltage detection level while the inverter output is OFF. 220V:Main circuit DC voltage drops below approx. 200V . (160 V for single phase) 440V:Main circuit DC voltage drops below approx. 400 V .	Check the following : 1. Power supply voltage. 2. Main circuit power supply wiring is connected. 3. Terminal screws are securely tightened.

Alarm Display and Contents

Alarm Display (Digital Operator)			Inverter Status	Explanation	Cause and Corrective Action
RCU-450(P)	RCU-450(P)				
	RCUS-450				
7-segment Display	Status Indicator				
	$\begin{aligned} & \text { RUN } \\ & \text { LED } \\ & \hline \end{aligned}$	$\begin{gathered} \text { ALARM } \\ \text { LED } \\ \hline \end{gathered}$			
	洨 Long Blinking	Long Blinking	Warning Fault contacts do not change state.	OV (Main circuit over voltage) Main circuit DC voltage exceeds the overvoltage detection level while the inverter output is OFF. Detection level: approx. 410 V or more (approx. 820V for 440 class).	Check the power supply voltage.
Blinking				OH (Cooling fin overheat) Intake air temperature rises while the inverter output is OFF.	Check the intake air temperature.
Blinking				CAL (MODBUS communications waiting) Correct data has not been received from the PLC when the constant F02 is 2 or F03 is 6 and power is turned ON.	Check communication devices, and transmission signals.
Blinking				OPE \square (constants setting error when the constants setting is performed through the MODBUS) OPE1: Two or more values are set for multifunction input selection. (F36~F39) OPE2: Relationship among V/F constants is not correct (F09~F14) OPE3: Value of motor rated current exceeds 120% ofinverter rated current. (F32) OPE4: Upper / lower limit of frequency reference is reversed. (F30~F31) OPE5: Incorrect setting value of jump frequency reference (F49~F50)	Check the setting values.

Alarm Display and Contents

Alarm Display (Digital Operator)			Inverter Status	Explanation	Cause and Corrective Action
RCU-450(P)	RCU-450(P)				
	RCUS-450				
7 -segment Display	Status Indicator				
	$\begin{aligned} & \text { RUN } \\ & \text { LED } \\ & \hline \end{aligned}$	ALARM LED			
II Blinking	ON	$\rightarrow 1$ Long Blinking	Warning Fault contacts do not change state.	OL 3 (Over torque detection) Motor current exceeds the preset value in constant F60	Reduce the load, and expand the accel / decel time.
Blinking				SER (Sequence error) Inverter receives LOCAL / REMOTE select command or communication / control circuit terminal changing signals from the multifunction terminal while the inverter is outputting.	Check the external circuit (sequence).
Blinking	ON	$\rightarrow 1$ Long Blinking		BB (External baseblock) Baseblock command at multi-function terminal is active, The inverter output is shut OFF (motor coasting). Temporary condition is cleared when input command is removed.	Check the external circuit (sequence).
Blinking	潅 Long Blinking	海 Long Blinking		EF (Simultaneous FWD/REV run commands) When FWD and REV run commands are simultaneously input for over 500 ms , the inverter stops according to constant F04.	Check the external circuit (sequence).

Alarm Display and Contents

Alarm Display (Digital Operator)			Inverter Status	Explanation	Cause and Corrective Action
RCU-450(P)	RCU-450(P)				
	RCUS-450				
7-segment	Status Indicator				
	$\begin{aligned} & \text { RUN } \\ & \text { LED } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ALARM } \\ & \text { LED } \end{aligned}$			
Blinking	ON or $\rightarrow 1$	埌 Long Blinking or 液	Warning Fault contacts do not	STP (Operator function stop) STOP/RESET key is pressed during running by the control circuit terminals FWD / REV command, or by the run command from communications. Inverter stops according to constant F04. STP(Emergency stop) Inverter receives emergency stop alarm signal. Inverter stops according to constant F04.	Open FWD/REV command of control circuit terminals . Check the external circuit (sequence).
Blinking				FAN(Cooling fan fault) Cooling fan is locked.	Check the cooling fan and if the cooling fan wiring is not connected.
Blinking				CE (MODBUS) communications fault	Check the communication devices or communication signals.

Fault Display:

Fault Display (Digital Operator)			Inverter Status	Explanation	Cause and Corrective Action
RCU-450(P)	$\begin{gathered} \hline \text { RCU-450(P) } \\ \hline \text { RCUS-450 } \end{gathered}$				
$\begin{gathered} \hline \text { 7-segment } \\ \text { Display } \end{gathered}$	Status	dicator			
	$\begin{aligned} & \hline \text { RUN } \\ & \text { LED } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { ALARM } \\ & \text { LED } \end{aligned}$			
	OFF	Long	Protective Operation Output is shut OFF	OC (Overcurrent) Inverter output current momentarily exceeds approx. 200% of rated current.	Short circuit or grounding at inverter output side. Excessive load GD ${ }^{2}$. Extremely rapid accel/decel time. constants F19 to F22 Special motor used. Starting motor during coasting. Motor of a capacity greater than the inverter rating has been started. Magnetic contactor open/closed at the inverter output side.
				GF (Ground fault) Ground fault current at the inverter output exceeded inverter rated current.	Check the motor insulation. Check that the connection between inverter and motor is not damaged.

Fault Display and Contents

Fault Display (Digital Operator)			Inverter Status	Explanation	Cause and Corrective Action
RCU-450(P)	RCU-450(P)				
	RCUS-450				
7-segment Display	Status Indicator				
	$\begin{aligned} & \text { RUN } \\ & \text { LED } \\ & \hline \end{aligned}$	$\begin{gathered} \text { ALARM } \\ \text { LED } \\ \hline \end{gathered}$			
	OFF	Long Blinking	Protective Operation Output is shut OFF and motor coasts to a stop.	OV (Main circuit overvoltage) Main circuit DC voltage exceeds the overvoltage detection level because of excessive regenerative energy from the motor. 220V: Stops at main circuit DC voltage below approx. 410V. 440V: Stops at main circuit DC voltage approx. 820V	Insufficient decel time.(constants F17 and F18) Lowering of overhauling load. Increase decel time Connect optional braking resistor.
HA				UV1 (Main circuit low voltage) Main circuit DC voltage drops below the low-voltage detection level while the inverter output is ON . 220V: Stops at main circuit DC voltage below approx. 200V (160 V for single-phase) 440V: Stops at main circuit DC voltage approx. 400 V	Reduction of input power supply voltage. Open phase of input supply. Occurrence of Momentary power loss. Check the power supply voltage, wiring and screws.
				OH (Cooling fin overheat) Temperature rise because of inverter overload operation or intake air temperature rise.	Excessive load. Improper V/F pattern setting. Insufficient accel time if the fault occurs during acceleration. Intake air temperature exceeding $50^{\circ} \mathrm{C}$. Cooling fan stops. Check the load size, V/F pattern setting, intake air temperature.

Fault Display and Contents

Fault Display (Digital Operator)			Inverter Status	Explanation	Cause and Corrective Action
RCU-450(P)	RCU-450(P)				
	RCUS-450				
7-segment Display	Status Indicator				
	$\begin{aligned} & \hline \text { RUN } \\ & \text { LED } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { ALARM } \\ \text { LED } \\ \hline \end{gathered}$			
	OFF		Protective Operation	OL1 (Motor overload) Motor overload protection operates by built-in electronic thermal overload relay.	Check the load size or V/F pattern setting. Set the motor rated current shown on the nameplate by
		$\begin{gathered} \text { Long } \\ \text { Blinking } \end{gathered}$		OL2 (Inverter overload) Inverter overload protection operates by built-in electronic thermal overload relay.	Check the load size or V/F pattern setting. Check the inverter capacity.
				OL3 (Overtorque detection) V/F mode: Inverter output current exceeds the preset value in constant F60	increase the value of constant F60 up to the highest value allowed for the machine.

Fault Display and Contents

Fault Display (Digital Operator)			Inverter Status	Explanation	Cause and Corrective Action
RCU-450(P)	$\frac{\text { RCU-450(P) }}{\text { RCUS-450 }}$				
7-segment Display	Status Indicator				
	$\begin{aligned} & \text { RUN } \\ & \text { LED } \end{aligned}$	$\begin{aligned} & \text { ALARM } \\ & \text { LED } \end{aligned}$			
	OFF	Long Blinking	Protective Operation Output is shut OFF and motor coasts to a stop.	$\mathrm{EF} \square:$ (External fault) Inverter receives an external fault input from control circuit terminal. EF0: External fault reference through MODBUS communications. EF2: External fault input command from control circuit terminal S2 EF3: External fault input command from control circuit terminal S3 EF4: External fault input command from control circuit terminal S4 EF5: External fault input command from control circuit terminal S5	Check the external circuit (sequence).
				CPF-00 Initial memory fault is detected.	Cycle power. If the fault remains, replace the digital operator or inverter.
				CPF-01 ROM error is detected.	Cycle power. If the fault remains, replace the digital operator or inverter
				CPF-04 EEPROM fault of inverter control circuit is detected.	Record all constant data and initialize the constants. Cycle power. If the fault remains, replace the inverter.
				CPF-05 AD converter fault is detected.	Cycle power. If the fault remains, replace the inverter.

Fault Display and Contents

APPENDIX

Recommended Peripheral Devices

It is recommended that the following periheral devices be mounted between the AC main circuit power supply and EI-450 input terminals R/L1, S/L2, and T/L3.

- MCCB (Molded-case circuit breaker):

A circuit breaker should be connected for wiring protection.

- Magnetic contactor:

Mount a surge suppressor on the coil.
To assure optimum inverter life when using a magnetic contactor to start and stop the inverter, do not exceed one stop per hour.

Recommended MCCB and Magnetic Contactor

220V Class 3-phase

EI-450 model	01 L	02 L	03 L	05 L	07 L
Inverter capacity (HP)	1	2	3	5	7.5
Rated output current (A)	5	8	11	18	25
Max. MCCB rating (A)	15 A	20 A	20 A	30 A	30 A
Magnetic contactor	CN-11	CN-16	CN-16	CN-18	CN-25

220V Class Single-phase

EI-450 model	P2L	P4L	S1L	S2L	S3L
Inverter capacity (HP)	$1 / 4$	$1 / 2$	1	2	3
Rated output current (A)	1.6	3	5	8	11
Max. MCCB rating (A)	15 A	15 A	20 A	20 A	30 A
Magnetic contactor	CN-11	CN-11	CN-11	CN-16	CN-16

440V Class 3-phase

EI-450 model	01 H	02 H	03 H	05 H	07 H	10 H
Inverter capacity (HP)	1	2	3	5	7.5	10
Rated output current (A)	2.5	4	6	8	15	18
Max. MCCB rating (A)	15 A	15 A	15 A	20 A	30 A	30 A
Magnetic contactor	CN-11	CN-11	CN-11	CN-16	CN-16	CN-25

[^0]: ${ }^{1}$ Apply the rated torque to terminal screws. Loosen screws can cause short circuit and malfunction.
 Tightening the screws too much can damage the terminals and cause short circuit and malfunction.
 ${ }^{2}$ Use copper wires with $600 \mathrm{~V}, 75^{\circ} \mathrm{Cratings}$ for wiring only.

[^1]: When running signal is in OFFcondition，terminal S3 can reset the fault or press
 Note：
 stor But if the running signal is in ON condition，the fault can not be reset．

