RP3
 INSTRUCTION MANUAL
 We appreciate you for purchasing HanYoung NUX CO．，Ltd product．Before using the product you have purchased， check to make sure that it is exactly what yo please use it following the instructions below．

MAIN PRODUCTS
－DIGITAL ：Temper
DIGITAL ：Temperature Controller，Counter，Timer，Speedmeter， －Tachometer，Panel Meter，Recorder
－SENSOR ：Porimimy Sensor）Poto Eletric Sensor，
Rotary Enconer，Ontical Fiber Sensor， Rotary Encoder，Optical Fiber Senso
Pressure Sensor ANALOG：Timer，Temperature Controller

head office

1381－3，Juan－Dong，Nam－Gu Incheon，Korea
TEL：（82－32） $876-4697$ FAX：$(82-32) 876-4696$

ME0205K071126
－Safety information
Beitro you use，read safity preceations careftully and use this product properly．The
precautions descoribed in this manual contain important contents related with saiely：

A DANGER

There is a dangen of ofccuring glectic shock in the input output terminals so please never let
your body or oronductive substance is touched．

\triangle WARNING

to install
 accordance with the rating．
i．Sompleied．
4．
not decompose，modity，revise or repair this product．This may be a cause of 4．Do not deocomosese modity，revise
maltunction，eleortic sho ork rire．
5．
5．Reassemble this sporduct whilie the power is OFF．Otherwise，it may be a cause of
6．If you usis the producuc with methods other than specified by the manutacturer，there may be
7．Therei is is a possbibilityy fo occurring electricic shock so please use this product atter installing it

\triangle CAUTION

，
2．Beiore using the eproduct you puruchased，make mesure that tit it sexitacatly．what you ordered．
3．Make sure Do not use this troeduct ta tany any pace with woccurring of corrosivive essedecially noxious gas
5．Domonotia）or thammabe this product gas．any place with direct vibration or impact．
6．Do not see this product at a any place with iquidi，oil，medical substances，dust，salt or iron 7．Don ont polishsh this producuct with substan
deiergent．）
8．Do ont use this product at any place with a large inductive difificulty or occurring static
electicity or magnetic noise．
9．Do not use this product a tany place with possible thermal accumulation due to direct
10．nstall this prod ructatatiol place under $2,000 \mathrm{~m}$ in altitude．
electric leakagae o of fire．we，the inspecion is sssential because there is danger of an

13．The tite is oisecemmenter must be beatached to a panel which i s already connected to a ground and the
 14．It twisting the power cables closely together thenit it effective against noise．

IECO47－1 or IICCO44－3．3
18．Install a circuit breaker or switch hat near place for convenient use，
19．Write down on a abel that ithe circuit beeaker or swith is operatin
disconnected since the circuit breaker or swith is is intalled．
20．For the continuous and safi use of t this product，the periodical maintenance is

Suffix Code Structure

Model Name	Suffix code			Description	
RP3	$\square \cdot$	\square	\square	Multi Pulse Meter	
Size	3			DIN Size： $96 \times 48 \times 105.6$ mm	
Displayabe Digits 5				5 digits 1 stage	
Power Supply		A	A	100－240V a．c（ $50-60 \mathrm{~Hz}$ ）	
		D	D	24－60 V a．c／d．c	
Outpu Speafication Size－6				Main output	Subsidiary output
				Only Display	\cdots
				Relay 3 stages Output	－
			2	Relay 5 stages Output	－
			3	NPN Open Collector 5 Stages Output BCD Output	
				${ }_{5}$ NFNOPen Coulectior	4－20 mA Current Output
				$\begin{array}{\|l\|l} \hline \text { NPN Open Collector } 5 \\ \hline \text { Stages Output } & 4 \\ \hline \end{array}$	
			485 communication		
				$\begin{array}{\|l\|} \hline \text { NPN Open Collector 5 } \\ \text { Stages Output } \\ \hline \end{array}$	Low Speed Serial

\square Ratings

Power Supply		$100 \sim 240 \mathrm{Va.c}(50-60 \mathrm{~Hz}$ ）， $24 \sim 60 \mathrm{~V}$（ c c／d．c）
Power Consumption		Approx． 9.5 V A（ $220 \mathrm{Va.c} 60 \mathrm{~Hz}$ ），Approx． 5 W （24 Vd．c）
Voltage for Sensor		12 V d．c $\pm 10 \% 120 \mathrm{~mA}$
	Measurement Accuracy	Mode F1：FS $\pm 0.05 \mathrm{rdg} \pm 1$ dig Mode F2，F3，F4，F5，F6：FS $\pm 0.01 \%$ rdg ± 1 dig
Meas	Raņ	Mode F1： $0.0003 \sim 10$ Ktz Mode F2 ： $0.0003 \sim 1000 \mathrm{~Hz}$ Mode F3，F4，F5，F6：0．001s－3，200 s Mode F7，F8，F9： $0-4 \times 10^{\circ}$ Count
Oper	ration mode	F1：Revolution／treguency／Velocity F2：Moving Velocity F3：Cycle F4：Passing time F5：Time lag F6：Time width F7：Pulse width F8：Pulse interval F9：Addilion Counler
	Prescale	$0.0001 \times 10^{-9} \sim 9.9999 \times 10^{9}$
	Input Signal	Non－Contact Input ： Max． 10 kłz （ON voltage： $4.5 \mathrm{~V}-24 \mathrm{~V}$ ，OFF voltage： $0-1.0 \mathrm{~V}$ ） Contact Input ： Max． 30 Hz （ 12 V DC，able to switch the current of 2 mA sufficiently）
Max．Di	Displayable Digits	5 digits（0～99999）
	splay Method	7 Segment（Font sizee（W）83 mm $\times(\mathrm{H}) 14 \mathrm{~mm}$ ）
	Display Cycle	$0.0550 .5 / 1 / 1 / 4 / 8 \mathrm{sec}$
	Hysteresis	$0 \sim 9999$（applicable only for output type）
	Functions	Auto Zero Time Setting Function Display Cycle Setting Function Time Unit Selection Function Parameter Lock Function Remote／Local Conversion Function （applicable only for communication output type） Current Output Range Selection Function （applicable only for current output type） Max．Min．Peak Value 10 Steps Memory Function Start Compensation Timer Function Electricity Failure Compensation（applicable only for F9） Comparative Output Function（HH，H，GO，L，LL）
言	Output Types	－Transistor Output（NPN／PNP Open Collector Output）： Comparative Alarm Output －Relay Output（HH，H，GO，L，LL） －PV Transfer Output（4－20mA d．c）：Displayed Value Output －RS485 Communication Output ： 32 channels ：Displayed Value Output，PC Setting Function） －BCD Dynamic Displayed Value Output Function －Low Speed serial Output
Insulation Resistance		Above 10 W\＆（at 500 V DC mega）Between electrically chargeable part and non－electrically chargeable part
Noise Immunity		By noise simulator，square－shaped wave noise （pulse width $1 \mu \mathrm{~s}) \pm 2000 \mathrm{~V}$
Dielectric Strength		2000 V AC 50 Hz for 1 minute （between AC power terminal and case， between AC terminal and measurement input terminal）
	Durability	$10-55 \mathrm{~Hz}$ double amplitude width 0.75 mm
	tion	$10-55 \mathrm{~Hz}$ double amplitude width 0.5 mm in each $X . Y . Z$ direction for 10 minutes

	$300 \mathrm{~m} / \mathrm{s}^{2}$（approx．30G）in each X X Y ． Z direction for 3times
	$100 \mathrm{~m} / \mathrm{s}^{2}$（approx．10G）in each X Y Y ． Z direction for 3times
Operating Ambient Temperatur	－10～ 60 c （（without condensation）
Storage Temperature	$-20 \sim+60 \mathrm{c}$（without condensation）
Operating Ambient Humidity	$35 \sim 85 \%$ RH
Weight	Approx． 220 g

－Aspect \＆Panel Cutout Dimension

－Wiring Diagram

Indicator［RP3－5A（D）N

－Contact output［RP3－5A（D）1］Contact output［RP3－5A（D）2］

－Subsidiary Output

■NPN Open Collector＋BCD Output［RP3－5A（D）3］

■ NPN Open Collector＋Current Output［RP3－5A（D）4］

\square NPN Open Collector＋RS－485 Communication［RP3－5A（D）5］

－Input Specification

－Input Specification
The max input trequency is 10 w when ONOFF time is
higher than the minimum $50 \mu \mathrm{~s}$
At this time，it can be accur
Above 50 山s
input puise is 50% ．
nput Type Seting
－nimo：NPN Normal Open

－PnP．no ：PNp Normal Open
－PnP』E ：PNP Normal Clos

－Lant．E．：Contact Input Normal Open

■ Caution when selecting Sensor Type

Before connecting the sensor，if the input specification is not selected
Example of sensor type setting
ninno－Normal open（NPN NO）

Output Specification

Contact Output
－Max．contact capacity ： 1250 V A（a．c）， 150 W （d．c）
－Contact capacity ： 5 A 250 V a．c， $5 \mathrm{~A} 30 \mathrm{~V} \mathrm{d.c}$
Life ：Electrical life－Around Fifty thousand（3A 250 V a．c） per minute

Non Contact Output

- Power consumption : 500 mW
- Output type : NPN Open collector
- Load voltage : $12-24 \mathrm{~V}$ d.c
- BCD Dynamic Output
-Output Signal : BCD data (A, B, C, D) $\rightarrow \mathrm{A}$: lowest Bit
Dot Point(Dot) \rightarrow Dot value of each Digit Data $\mathrm{Dot} \mathrm{Data(D0}, \mathrm{D1}, \mathrm{D2} \mathrm{D} 3,, \mathrm{D} 4) \rightarrow \mathrm{DD}:$
$\mathrm{D} 4:$ Lowest Dighest Digit,
Output: NPN Open collector
-Rated load voltage: $12-24 \mathrm{~V}$ d.c
- Example

Low Speed Serial Outpu
Output signal : CLK, Data, Latch

- CLK cycle : 50 Hz

Number of of output CLL Data

- Rated load valtage: $12-24 \mathrm{~V}$ d.c

Lesen $-\underbrace{\sim}_{\mid}$
- Data Output order of serial Transmission
x_{2}^{5}

PV Transmission Output(4-20 mA d.c)
Use: :Transmit measuring value to external equipment
Function : transmita a Measured value between high Output(PV-H) and low Output(PV-L)
hand Low Output
measuring range (PV-H) : from minimum value to maximum value within
- Low Setting range(PV-L): From Maximum value to minium value within measuring range (Notice, PV-H must be bigger than PV-L by 1 at least) -Load resistance: Max. 600
RS-485 Communication Output
Address : 0 ~ $99(32$ Channels) 2400/4800/9600/19200 bps
Transmission code : Binary
- Parity Bit : None

Data Bit : 8 Bit
Stop Bit: 1 Bit
Communication items

RP3-5A(D)5 \& PC : Set value, Clear for peak value, Reset control RP3-5A(D)5 \& PC : Set value, Status value of control

Operating Mode

■ Mode ₹ : Frequency (Hz) / Revolution (rpm) / Velocity (m/s) Revolution (RPM): IN A Input Cycle(f) $\times \alpha$ ($a=60 \times$ prescale value) display value Freauency (Hz): (defaui)
Frequency (Hz): IN A Input Cycle(f) $X_{\alpha}(\alpha=$ prescale value) display value

$\alpha=$ prescale value, $\mathrm{N}=$ the number of waveform per 1 revolution

- Example of Applicatio

- Display value \& Units

Display value	Units	Prescale Value 6
	$\mathrm{~mm} / \mathrm{s}$	1000 L

Units	Prescale Vavera)	Display value	Units	Prescal Value(t)
mm/s	1000 L	Frequency	Hz	1
cm/s	100 L		KHz	0.001
m/s	L (default)	Revolution	RPS	1
m/min	60 L		RPM	60

hold
[Mode [[]: Moving Velocity (m/s)
Display the moving velocity from ON of $\operatorname{IN} A$ to $O N$ of IN B

- Velocity (m / s): IN A Input Frequency $(\mathrm{f}) \times \alpha$ value display. $\alpha=\mathrm{L}(\mathrm{m})$
- Display value \& Units - Example of Application

- Default of Prescale Valu

Time $=1$ sec, Length $=1 \mathrm{~m}$. $\mathrm{L} \rightarrow$ the Distance from $\operatorname{IN} \mathrm{A}$ sensor to $\operatorname{IN} \mathrm{B}$ (unit:m) Display	$(1 / t 1) \times a$	$(1 / t 2) \times a$	Keep $(1 / 44) \times a$	$(1 / 1 / 6) \times a$

Display the input cycle (T) of IN A after measuring

- Cycle: IN A Input Cycle (t)

-Mode F 4 : Passing Time (s)

isplay the passing time the after measuring the input cycle (T)

- Moving distance per 1 pulse $=$ the circumference ($\pi \mathrm{D}$) of the roller / N (Pulse per 1 revolution of the encoder)
- aprescale) = process operation length (m) \times moving distance (m) per 1
*Prescale is the required pulse number in order to pass the process operation.

Example of Obtaining a
Example of Obtaining a
Prescale Value (no unit) The diameter of the revolving object = D
The number of pulse per 1
revolution of the encoder =
revolution of the encoder $=N$
Process Operation Length $=L$ Precess Operation Length $=\mathrm{L}$
Pal $)=\mathrm{L}(\pi \mathrm{D} / \mathrm{N})$
Display

- Mode F 5: Time Lag

Display the time from ON of IN A to ON of $I N B$ after measuring it

■ Mode F 5 : Time Width
Display the time after measuring the time IN A is ON

$$
\begin{aligned}
& \text {-Time Width (T): t } \\
& \text { - Display value \& Units }
\end{aligned}
$$

Mode FT: Pulse Width (length)
isplay the length after measuring the pulse of $\mathbb{N} A$ while $\operatorname{IN} B$ is ON
Display value \& Units - Example of Application ${ }_{\text {Lengn }}$ Dispary value Units Prescale Value(a) Example of Application $_{\text {Leng }}$ $\begin{array}{lll} & \mathrm{mm} & 1000\end{array}$

rrar in

> | | | |
| :--- | :--- | :--- |
| Display | $4 \times a$ | $2 \times a$ |

■ Mode F 8 : Pulse Interval Coefficient (Interval between objects)
Display the pulse of input IN A from the time when IN B is ON to the time when IN is re-ON

- Interval $=\mathrm{P} \times{ }_{\alpha}$ ($\mathrm{P}=\mathrm{P}$ ulse of $\mathrm{IN} \mathrm{A}, \alpha=$ prescale value)

- Display value \& Units			- Example of Application
Displavalue	Units	Prescale Value $($ a)	
Vebocity	mm	1000	
	cm	100	
	m	1	NA liNB
	antity(E)		

_ Mode F 9 : Addition Counter (Coefficient
starts counting the pulse which inputs to IN A but it does not count the
ulse when $\operatorname{IN} B$ is $O N$.

- Counter $=\mathrm{P} \times \alpha$ (P=Pulse of IN A, $\alpha=$ Prescale Value)
- Example of Application
If you input 0.1 to the prescale
value ((a) of IN A and apply the
dot position as 99999 . then the
displayed value is increased by 1
for every 10 incremen

asplay	1	2	3	4	5	6	7	0	1	2	3

| 5 | 6 | 7 | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |$| 3$

 in B

－Parameter Table For Each Operation Mode

Symbol Description ：\bigcirc（use），\times（no use）

Displayed Characters	F1	F2	F3	F4	F5	F6	F7	F8	F9
5PLrP	SP Group（Comparative Value Seting Group）								
$5 P \mathrm{HH}$	c	＜	\bigcirc	c	c	c	c	＜	
5P．H	c	（	c	c	c	＜	（	＜	
5P．5EL	c	c	く	＜	c		c	＜	
5 P ．L	c	c	＜	c	c		＜	c	
$5 P \mathrm{LL}$	c	c	C．	c．	c．	c	\bigcirc	c	
P5LTP	PS Group（Prescale or Time Option Setting Group）								
P5 R	c	c	\times	（	\times	\times	\bigcirc	（	
P5 枵	c	c	\times	c	\times	\times	＜	＜	
－＇5dot	c	c	\times	\times	\times	\times	c	＜	
－55RP	c	\bigcirc	\bigcirc	¢	c	く	c	＜	
435	c	c	\bigcirc	＜	¢	＜	＜	く	
Li $\bar{n} \mathrm{E}$	\times	\times	\bigcirc	c	C	c	\times	\times	
SEELP	Setup Group（IN／OUT Setting Group）								
FünL／	c	c	¢	¢	（	＜	（	＜	
$1 \sim$－	c	c	c	c	c	＜	c	＜	
in－b	\times	c	\times	\times	c	\times	c	＜	
OLIt－	c	\bigcirc	\bigcirc	c	c	\bigcirc	S	c	
RutzR	c	c	¢	c	c	¢	＜	＜	
RULLb	\times	\bigcirc	\times	\times	c	\times	c	c	
RULER	c	c	（	\％	（	c	\times	\times	
－PLEP	Option Group（Option Setting Group）								
$\mathrm{P}_{\mathbf{L}}-\mathrm{H}$	c	c	－	－	－	\bigcirc	－	c	
$P_{L}-L$	c	C	（	（	（	く	（	c	
$\begin{array}{r} \text { Rodr. } \\ \hline \text { bp5 } \\ \hline \end{array}$	The communication setting is a system operation which is notrelated with the modes								
rñot．	The remote control is a system operation which is not related with the modes								
ñEñar	\times								
Prach	c	c	c	c	C．	c	\bigcirc	－	
PELEP	Peak Display Group（Peak Value Save Group）								
HPEE 1	c	c．	C．	c．	C．	c	c	c	
HPEL？	c	c	C	c	c	\％	c	c	
HPEL3	c	c	\bigcirc	\bigcirc	（	\bigcirc	\bigcirc	c	
HPELY	c	c	\bigcirc	c	（	\bigcirc	c	c	
HPEER	c	\bigcirc	\bigcirc	c	，	\bigcirc	\bigcirc	c	
LPEL I	c	\bigcirc	\bigcirc	\bigcirc	－	c	\bigcirc	c	
LPELS	c	s	\bigcirc	\bigcirc	c	－	\bigcirc	c	\times
LPELJ	c	c	\bigcirc	c	－	＜	\bigcirc	c	
LPELY	c	c	\bigcirc	c	c	c	＜	c	
LPELR	c	く	c	c	c	5		c	

－Default Value of Parameter

SPGoup	Initial	PsGroup	Initial
5 P HH	20000	P5 R	5000
5 P H	00000	P5 8	10
5P．5EL	20000	dSdat	39939
$5 P \cdot L$	00050	d55RP	05
$5 P \mathrm{LL}$	20000	H35	8080
		Li	Pn 5oddd
Setupgroup	Initial	Option Group	Initial
FunLin	$F!$	$\mathrm{P}_{\boldsymbol{L}}-\mathrm{H}$	93939
1 п－	nPrno	$P_{\nu-L}$	00050
in－b	пPпna	Rddra	80
－utt－n	ollt－5	bP5	2405
Rutct	070	rnotic	reñat
Rutzt	DOL	へ̇Eñar	－
RUL $=$ R	7050］	Pract	aFF

■ Output Mode out－n

■Standard out－5 Mode

Output HH：	：Comparative HH Displayed Value
Output H	：Comparative
	Displayed
utput PAS	SS：when out
	L，LL
ut	：Comparative L
	Displayed Value
tLL	：Comparative LL
	Displayed Valu

\square Zone Output out－I Mode
■ Zone Output out－Mode
 Output HH ：Comparative $\mathrm{HH} \leq$ Output H ：Comparative H Output H ：Comparative H Output PASS：when outuput $\mathrm{HH}, \mathrm{H}, \mathrm{H}$,
L, LL is OFF，it is ON Output L ：Comparative $\mathrm{LL} \leq$ Output LL ：Comparative LL

Displayed V
$L L<L<H<H H$

Output HH：Comparative $\mathrm{HH} \leq$ Output H ： $\begin{aligned} & \text { Displayed Value } \\ & \text { Comparative } \mathrm{H} \leq \\ & \text { Displayed Value }\end{aligned}$
 Output L ：Comparative $L L$
Displayed Value Output LL： $\begin{gathered}\text { Compayarative LLue } \\ \text { Displayed Value }\end{gathered}$
－ONE short out－F Mode

Output HH ：Comparative $\mathrm{HH} \leq$

Double Deviation out－d Mode
in the case of outputing when the SV is set and it is higher than HH deviation，
deviaion，Ladian，Lhe did from the SV
and disla is saved by pressing the front $\stackrel{+}{+}$ keys
by pressing \quad saved SV is displayed SV by pressing key and if

HH Deviation HV Deviation L Deviation	$\Rightarrow N$	Deviation Setting Range 0.0001 ～ 99999	
LL Deviaition	V		
HH Deviaion Output			
H Deviaion Output			
		\％sv ：Setting Value	
	－	PV ：Displayed Value	

■ Function Description

－Auto Zero Time
Auto Zero Value then the displayed value will the＂oope which is set as Auto Zero Value，then the displayed value will be＂ 00000 ＂by the predicting setting when the stop of the revolving object will be occurred，it can be set and used the time as the setting time of Auto Zero．
－The setting time of Auto Zero is from 0.1 sec．to 9999.9 sec．
$■$ Starting Compensation Timer Function $\left.{ }^{(n 01 e} 5\right)$
After turning the power ON，as invalidating the measurement in the some periods of time，the function limits the faulty output caused by the faulty etc．irregularly． Specially，when starting the revolving object，it validates in the case
that it does not make the comparative（L，LL）judgment by the low that it does not make the comparative（ $L, L L$ ）judgment by the low
speed revolution operation． speed revolution operation．

| The setting time of the Comparative L（LL） |
| :--- | :--- |
| starting compensation |
| from 0.1 sec．to |

－Display Cycle Setting Function
This is the function which can change the cycle about the display cycle This is the function which can change the cycle about the display cycle
of the displayed value so that it tisplays in the time unit of the set cycle．
Setting Display Cycle $=0.05 / 0.511 / 2 / 4 / 8$ sec．

－Time Unit Selection Function ${ }^{\text {（noes）}}$

As selecting the measurement value in the various time units，the
function displays the values efficiently．
The time unit function can display after selecting one between the
decimal system and sexagesimal system．
The time unit is applied only for F3，F4，F5，

■ Parameter Description

■ Menu Setting Flow Char

\square Key Description

＊Notice 2）：If you press $\boldsymbol{*}$ for 3 sec ，You can enter Menu
\square Parameter Group Flow Chart

Setting Menu	Meaning	Setting Contents	
	Comparative Setting Group Selection	If set a measuring value under a decimal point，below set value can be convert to be set under decimal point	Default
$59 \text {, } \% \text { \& }$	Comparative HH Setting	－F1，F2，F7，F8，F9 ： 0 ～ 99999 －F3，F4，F5，F6 ： 0 ～set time range	000000
$\begin{gathered} 59.182000: 9999 \\ 0 \end{gathered}$	Comparative H Setting		000000
$595 E E 80008159939$ 0	Set Value（Only Out－d）		00000
$59.180005:-39999$ 0	Comparative L Setting		00000
59，1280000－ 93939	Comparative LL Setting		00000

[^0] group．If each parameter is set and the hysteresis value is inputted，you can stably obtain the desired output．

Peak Hold or Reset Function ${ }^{(\text {noie })}$

This function displays MAX value and MIN value in the comparative values．It is possible to select a function by the one－touch button．

－Peak Hold Save \＆Confirmation
MAX Peak Value：$H P E \cdot \mathrm{H}$ ：$H P E \cdot \mathrm{H}$－$H P E \cdot \mathrm{H}$ save the value MIN Peak Value：LPEH：LPEMG LPENS save the value

－Hysteresis Function

ne case of the measured value becomes unstable around the mparative value，set the hysteresis value from the setting value in or the comparative value HH, H ，the decree outpulue is applied as the hysteresis value and for the comparative value LL ， L ，the increased hysteresis value and for he comparative value LL，L ，the increased alue is applied as the hysteresis value．（The default setting is 1 and

2. PS Group (Prescale or Time Option Setting Group)

3. Setup Group (IN/OUT setting group)

Setting Menu	Meaning	Description	Initial
	Input/Output control setting group selection	Input/Output setting in the Input/Output control setting group	
	Input Operation Mode Setting	Fi-F9	$F:$
	IN A' sensor type setting	nPnno: :NPN Normal Open nPran! :NPN Normal Close PnPno: PNP Nomal Open PnPinE :PNP Normal Close Cont.t. : Contact Normal Open nPno-nPnot-PnPno-PnPnE-Eantt.	aproo
0 \qquad ©	IN B' sensor type setting Output mode setting	nPrno: :NPN Normal Open nPrnil :NPN Normal Close PnP.no: PNP Nomal Open PnP.nI: :PNP Normal Close Cont.t. : Normal Open nPno-nPant-PnPino-PnPint-Eantz.	nimo
out-ng - \qquad 0	IN A's start compensation timer setting	odt-5-ait-j-out-H-odt-L-out-F-odith	abt-5
	IN B's start compensation timer setting	80:999	00.0
	IN A's Auto Zero timer setting	00. 189.9	00.0
		0080.49999.9	0000.0

4. Option Group (Option setting group)

Setting Menu	Meaning	Description	Initial
	Option setting group selection	Set the option of the input/output setting item in the option setting group	
$P_{u}-48000000-93999$	PV transmission output's high limit value setting	-F1, F2, F7, F8, F9: 0 ~ 99999 - F3, F4, F5, F6: 0 ~ Set time Lange	99999
$P_{u}-180000293999$	PV transmission output's low limit value setting		00000
Madr.n © 08~39채블	Communication id setting	80~93	00
$\begin{array}{r} \text { bP58 } \frac{1}{2400 / 4800 / 9500} \\ 0 \end{array}$	Communication speed setting	$\begin{aligned} & 2400-4800-9500 \\ & \text { Setting Unit:bps } \end{aligned}$	2400
	Remote control setting	-Eñol: Remote Control Lo[RL: Local Operation reñot-iorgi	reñot
	Power failure compensation setting	an : Remote control from the outside (remote) off: Local operation only (Local) on off	on
	Parameter lock setting	 	off

(1: Only for RP3-5A(D) $4 \rightarrow 4 \sim 20 \mathrm{~mA}$ Output
(2) Only for RP3-5A(D) \rightarrow RS 485 Communication
5. Peak Display Group (Peak Value save Group)

Setting Menu	Meaning	Description	Initial
표시강 $-P E \varepsilon\left[\begin{array}{c}\text { P } \\ \hline\end{array}\right.$	Peak value save group	Save the MAX, MIN peak value of the measured values to the 10 memories	
	1st value of HIGH peak	Save the highest number of the measured value	80000
	2nd value of HIGH peak	Save the second highest number of the measured value	00000
	3rd value of HIGH peak	Save the third highest number of the measured value	80000
$\begin{array}{cc} 0 & 0 \\ \text { HPEEM } & \text { HIGH 표 크 베변제 가 } \end{array}$	4th value of HIGH peak	Save the fourth highest number of the measured value	80000
	Average value of 4 HIGH peaks	Save the average value after taking the average of the 4 saved HIGH peak values	00000
L.PE! \qquad	1st value of LOW peak	Save the fourth lowest number of the measured value	00000
	2nd value of LOW peak	Save the third lowest number of the measured value	80000
	3rd value of LOW peak	Save the second lowest number of the measured value	00008
(i)	4th value of LOW peak	Save the lowest number of the measured value	80000
	Average value of 4 LOW peaks	Save the average value after taking the average of the 4 saved LOW peak values	80000
PNELH [LoL- ELERT 0	Erase the memory of the peak value	Erase all the saved values	

[^1]
[^0]: Note 6 ）the display only product，BP6－5AN and the non－main output product，BP6－5A6，are not displayed like the above parameter comparative setting

[^1]: Saved values in Peak display group erase all
 *Saved peak values can be erased automatically when mode change or power ON/OFF.

