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Series Preface 

In recent years there have been many changes in the structure of undergraduate 
courses in engineering and the process is continuing. With the advent of 
modularization, semesterization and the move towards student-centred learn- 
ing as class contact time is reduced, students and teachers alike are having to 
adjust to new methods of learning and teaching. 

Essential Electronics is a series of textbooks intended for use by students on 
degree and diploma level courses in electrical and electronic engineering and 
related courses such as manufacturing, mechanical, civil and general engineer- 
ing. Each text is complete in itself and is complementary to other books in the 
series. 

A feature of these books is the acknowledgement of the new culture outlined 
above and of the fact that students entering higher education are now, through 
no fault of their own, less well equipped in mathematics and physics than 
students of ten or even five years ago. With numerous worked examples 
throughout, and further problems with answers at the end of each chapter, the 
texts are ideal for directed and independent learning. 

The early books in the series cover topics normally found in the first and 
second year curricula and assume virtually no previous knowledge, with 
mathematics being kept to a minimum. Later ones are intended for study at 
final year level. 

The authors are all highly qualified chartered engineers with wide experience 
in higher education and in industry. 

R G Powell 
Jan 1995 

Nottingham Trent University 
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Preface 

This book covers the material normally found in first and second year 
syllabuses on the topic of electric circuits. It is intended for use by degree and 
diploma students in electrical and electronic engineering and in the associated 
areas of integrated, manufacturing and mechanical engineering. 

The two most important areas of study for all electrical and electronic 
engineering students are those of circuit theory and electromagnetic field 
theory. These lay the foundation for the understanding of the rest of the 
subjects which make up a coherent course and they are intimately related. 
Texts on one of them invariably and inevitably have references to the other. In 
Chapter 2 of this book the ingredients of electric circuits are introduced and the 
circuit elements having properties called capacitance and inductance are 
associated with electric and magnetic fields respectively. Faraday's law is 
important in the concept of mutual inductance and its effects. Reference is 
made, therefore, to electromagnetic field theory on a need to know basis, some 
formulae being presented without proof. 

The level of mathematics required here has been kept to a realistic minimum. 
Some facility with algebra (transposition of formulae) and knowledge of basic 
trigonometry and elementary differentiation and integration is assumed. I have 
included well over a hundred worked examples within the text and a similar 
number of problems with answers. At the end of each chapter there is a series 
of self-assessment test questions. 

Ray Powell 
Nottingham, November 1994 
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1 Units and dimensions 

1.1 INTRODUCTION 

In electrical and electronic engineering, as in all branches of science and 
engineering, measurement is fundamentally important and two interconnected 
concepts are involved. First we need to know what it is that we wish to measure, 
and this is called a quantity. It may be a force or a current or a length (of a line 
say). The quantity must then be given a unit which indicates its magnitude, that 
is, it gives a measure of how strong the force is or how big the current is or how 
long the line is. In any system of units a certain number of physical quantities 
are arbitrarily chosen as the basic units and all other units are derived from 

these. 

1.2 The SYST' ME INTERNATIONAL D'UNIT -S 
This system of units, abbreviated to 'the SI', is now in general use and in this 
system seven basic quantities, called dimensions, are selected. These are mass, 
length, time, electric current, thermodynamic temperature, luminous intensity 
and amount of substance, the first four of which are of particular importance to 
us in this book. In addition to these seven basic quantities there are two 
supplementary ones, namely plane angle and solid angle. All of these are 
shown, together with their unit names, in Table 1.1. These units are defined as 

follows: 

kilogram (kg): 

metre (m): 

second (s): 

ampere (A): 

the mass of an actual piece of metal (platinum-iridium) kept 
under controlled conditions at the international bureau of 
weights and measures in Paris 
the length equal to 1 650 763.73 wavelengths in v a c u o  of the 
radiation corresponding to the transition between the levels 

2pl 0 and 5d5 of the krypton-86 atom 
the duration of 9 192 631 770 periods of the radiation corre- 
sponding to the transition between the two hyperfine levels of 
the ground state of the caesium-133 atom 
that constant current which, when maintained in each of two 



2 Units and dimensions 

Table 1.1 

Quantity Unit Unit abbreviation 

Mass kilogram kg 
Length metre m 
Time second s 
Electric current ampere A 
Thermodynamic temperature kelvin K 
Luminous intensity candela cd 
Amount of substance mole mol 

Plane angle radian rad 
Solid angle steradian sr 

kelvin (K): 

candela (cd): 

mole (mol): 

radian (rad): 

steradian (sr): 

infinitely long parallel conductors of negligible cross-sectional 
area separated by a distance of 1 m in a vacuum, produces a 
mutual force between them of 2 x 10 -7 N per metre length 
the fraction 1/273.16 of the thermodynamic temperature of 
the triple point of water 
the luminous intensity, in the perpendicular direction, of a 
surface of area 1//600 000 m: of a black body at the tem- 
perature of freezing platinum under a pressure of 101 325 Pa 
the amount of substance of a system which contains as many 
specified elementary particles (i.e. electrons, atoms, etc.) as 
there are atoms in 0.012 kg of carbon-12 
the plane angle between two radii of a circle which cut off on 
the circumference an arc equal to the radius 
that solid angle which, having its vertex at the centre of a 
sphere, cuts off an area of the surface of the sphere equal to 
that of a square with sides equal to the radius. 

The ~cale temperature (degree Celsius) is the thermodynamic temperature 
minus 273.16, so that 0 ~ corresponds to 273.16 K and 0 K corresponds to 
-273.16 ~ Note that we write 0 K and 273 K, not 0 ~ nor 273 ~ 

As an example of how the other units may be derived from the basic units, 
velocity is length divided by time. It is usual to write these dimensional 
equations using square brackets, with the basic quantities being in capital 
letters and the derived quantities being in lower case letters. Thus for this 
example we can write [v] - [L]/[T], or 

[v] = [L T -1] (1.1) 

Example 1.1 

Obtain the dimensions of (1) acceleration, (2) force, (3) torque. 

Solution 

1 Acceleration is the rate of change of velocity, so is velocity/time. Thus 
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[a] = [v]/[T]. From Equation (1.1) we have that [v] = [L T-I], so 

[a] = [L T-~I//[T] = [L T-~I[T -~1 

o r  

[a] = [L T -z] (1.2) 

2 Force is mass times acceleration. Thus [f] = [M][a]. From Equation (1.2) we 
have that [a] = [L T-2], so 

[f] = [MI[L T -2] 

o r  

[f] = [M L T -a] (1.3) 

3 Torque is force times the length of the torque arm. Thus [t] = [f][L]. From 
Equation (1.3) we have that [f] = [M L T-Z], so 

[tl = [M L T-~I[LI 

o r  

[t] = [M U T -21 (1.4) 

Example 1.2 

Determine the dimensions of (1) energy, (2) power. 

Solution 

1 Energy is work, which is force multiplied by distance. Thus [w] = [f][L]. 
From Equation (1.3) we have that [f] = [M L T-Z], so 

[w] = [M L T-Z][L] 

o r  

[w] = [M L 2 T -2] (1.5) 

2 Power is energy divided by time. Thus [p] = [w]//[T]. From Equation (1.5) 
we have that [w] - [M L 2 T-Z], so 

[p] = [M L 2 T-21/[TI - [M L ~ T-2I[T-~I 

o r  

[p] - [M L 2 T -3] (1.6) 

Example 1.3 

Find the dimensions of (1) electric charge, (2) electric potential difference. 



4 Units and dimensions 

Solution 

1 Electric charge is electric current multiplied by time. Thus [q] = [A][T], so 

[q] = [A T] (1.7) 

2 When a charge of 1 coulomb is moved through a potential difference of 
1 volt the work done is 1 joule of energy, so that electric potential 
difference is energy divided by electric charge. Thus [pd] = [w]/[q]. From 
Equation (1.5) we have that [w] = [M L 2 T-Z], and from Equation (1.7) we 
see that [q] = [A Y], so 

[pd] = [M L 2 T-2I/[A T] = [M L 2 T-2I[A - '  T -1] 

or  

[pd] = [M L 2 T -3 A-II (1..8) 

Example 1.4 

Obtain the dimensions of (1) resistance, (2) inductance, (3) capacitance. 

Solution 

1 Resistance is electric potential difference divided by electric current. From 
Equation (1.8) the dimensions of electric potential difference are 
[M L 2 T -3 A-I]. Thus Jr] = [M L 2 T -3 A - a I / [ A ] ,  so 

[r] = [M L 2 T -3 A -2] (1.9) 

2 The magnitude of the emf induced in a coil of inductance L when the 
current through it changes at the rate of I ampere in t seconds is given by 
e = L 1 / t ,  where e is measured in volts and is a potential difference. Thus the 
dimensions of L are given by [1] = [pd][T]/[A]. From Equation (1.8), 
[pal = [M L 2 T -3 A-~], so 

[1] = [M L 2 T -2 A -2] (1.10) 

3 Capacitance (C) is electric charge (Q) divided by electric potential 
difference (V). From Equation (1.7), [q] = [A T]. From Equation (1.8), 
[pd] = [M L 2 T -3 A-l]. Thus [c] - [A T]/[M L 2 T -3 A-l], so 

[c] = [M-'  L -2 T 4 A 2] (1.11) 

1.3 DIMENSIONAL ANALYSIS 

A necessary condition for the correctness of an equation is that it should be 
dimensionally balanced. It can be useful to perform a dimensional analysis on 
equations to check their correctness in this respect. This can be done by 
checking that the dimensions of each side of an equation are the same. 
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Example 1.5 

The force between two charges ql and q2 separated by a distance d in a vacuum 
is given by F = qlq2//4"rrEo d2, where e0 is a constant whose dimensions are 
[M L -3 T 4 m2]. Check the dimensional balance of this equation. 

Solution 

The left-hand side of the equation is simply the force F and from Example 1.1 
(2) we see that its dimensions are [M L T-2]. 

The dimensions of the right-hand side are [q][q]/[4][Tr][E0][d2]. From Exam- 
ple 1.3 (1) we see that the dimensions of electric charge [q] are [A T]. Numbers 
are dimensionless so that the figure 4 and the constant 7r have no dimensions. 
We are told in the question that the dimensions of E0 are [M -1 L - 3 T  4 m2]. The 
distance between the charges, d, has the dimensions of length so that d 2 has the 
dimensions [L2]. The dimensions of the right-hand side of the equation are 
therefore 

[A T I [ A  T ] / [ M  -1 n -3 T 4 A2I[L 21 -- [A 2 TZl[M L 3 T -4 A -2 L -21 = [M L T -2] 

which is the same as that obtained for the left-hand side of the equation. The 
equation is therefore dimensionally balanced. 

Example 1.6 

The energy in joules stored in a capacitor is given by the expression (CVb)//2, 
where C is the capacitance of the capacitor in farads and V is the potential 
difference in volts maintained across its plates. Use dimensional analysis to 
determine the values of a and b. 

Solution 

We have that W -  (cavb)/2 
In dimensional terms [w] = [c]a[pd] b 
From Equation (1.5), [w] = [M L 2 T -2] 
From Equation (1.11), [c] = [M -1 L -2 T 4 A 2] 
From Equation (1.8), [pd] -- [M L 2 T -3 A -i] therefore 

[M L 2 T-21 = [M -1 L -2 T 4 A2]a[M L 2 T -3 A- I ]  b 

Equating powers of [M], 1 - - a  + b ~ b - a + 1 
Equating powers of [A], 0 = 2a - b ~ b = 2a 
By substitution, 2a - a + 1, so 

a = l  and b = 2 a = 2  

The values required are therefore a - 1; b - 2 
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1.4 MULTIPLES AND SUBMULTIPLES OF UNITS 

There is an enormous range of magnitudes in the quantities encountered in 
electrical and electronic engineering. For example, electric potential can be 
lower than 0.000 001 V or higher than 100 000 V. By the use of multiples and 
submultiples we can avoid having to write so many zeros. Table 1.2 shows their 

names and abbreviations. 

Table 1.2 

Multiple Abbreviation Value Submultiple Abbreviation Value 

exa E 10 TM milli m 10 -3 

peta P 1015 micro tx 10 -6 
tera T 1012 nano n 10 -9 

giga G 10 9 pico p 10 -12 

mega M 10 6 femto f 10 -15 

kilo k 10 3 atto a 10 -18 

These are the preferred multiples and submultiples and you will see that the 
powers are in steps of 3. However, because of their convenience there are some 

others in common use. For example, deci (d), which is 10 -~, is used in decibel 
(dB); and centi (c), which is 10 -2, is used in centimetre (cm). Capital letters are 

used for the abbreviations of multiples and lower case letters are used for the 
abbreviations of submultiples. The exception is kilo for which the abbreviation 
is the lower case k, not the capital K. 

Example 1.7 

Express 10 seconds in (1) milliseconds, (2) microseconds. 

Solution 

1 To convert from units to multiples or submultiples of units it is necessary to 
divide by the multiple or submultiple. To find the number of milliseconds in 
1 second we simply divide by the submultiple 10 -3. Thus 1 second - 
1/10 -3 - 10 3 milliseconds. In 10 seconds there are therefore 
10 • 10 3 =  10 4 ms. 

2 To find the number of microseconds in 10 seconds we divide by the 
s u b m u l t i p l e  10 -6. Thus in 10 s there a r e  1 0 / 1 0  .-6 - 10 7 l~S. 

Example 1.8 

Express 1 metre in (1) kilometres, (2) centimetres. 

Solution 

1 To find the number of kilometres in 1 metre we divide by the multiple 10 3. 

Thus in 1 m there a r e  1 / 1 0  3 -- 10 -3 km. 
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2 To find the number of centimetres in 1 metre we divide by the submultiple 
10 -2. Thus in 1 m there are 1 /10  -2 = 10 2 cm. 

Example 1.9 

Express (1) 10 mV in volts, (2) 150 kW in watts. 

Solution 

1 To convert from multiples or submultiples to units it is necessary to multiply 
by the multiple or submultiple. Thus to convert from millivolts to volts we 
multiply by the submultiple 10-3: 

10 mV = 10 x 1 0 - 3 V  - 1 0 - 2 V  

2 Similarly, to convert from kilowatts to watts we multiply by the multiple 
103: 

150 kW = 150 • 103W = 1.5 • 105W 

Example 1.10 

Express (1) 10 mV in MV, (2) 5 km in mm, (3) 0.1 IxF in pF, (4) 50 MW in 
GW. 

Solution 

1 To convert from millivolts to volts we multiply by the submultiple 10 -3. 
Thus 

10mY = (10 x 10 -3 ) V = 10 -2V 

Then to convert to megavolts we divide by the multiple 10 6. Thus 

10-2V = (10-2//10 6) MV = 10 -2 • 10 -6 MV = 10 -8 MV 

Therefore, in 10 mV there are 10 -8 MV 

2 In this case we multiply by the multiple kilo (10 3) and then divide by the 
submultiple milli (10-3): 

5 km = 5 • 103m = (5 • 103,/10 -3) mm = 5 • 106 mm 

3 First multiply by the submultiple micro  (10 -6) and then divide by the 
submultiple pico (10-12): 

0.1 IxF = 0.1 x 10-6F = 10 .7 F = (10-7//10 -~2) pF = 10 5 pF 

4 Here we multiply by the multiple mega (10 6) and then divide by the 
multiple giga (109): 

5 0 M W  = 50 X 106W = 5 X 107W = (5 X 107/1.09 ) O W  = 5 X 10 - 2 o w  
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1.5 SELF-ASSESSMENTTEST 

1 Which of the following are units: 
torque; second; newton; time; kilogram? 

2 Which of the following are derived units: 
metre; coulomb; newton; ampere; volt? 

3 Obtain the dimensions of magnetic flux (~b) given that the emf induced in a 
coil of N turns in which the flux is changing at the rate of ~b webers in t 
seconds is Nd~//t volts. 

4 Obtain the dimensions of magnetic flux density, B (magnetic flux per unit 
area). 

5 Determine the dimensions of potential gradient (change in potential with 
distance (dV/dx)) 

6 Express: 
(a) 30 mA in amperes 
(b) 25 A in microamperes 
(c) 10 MW in milliwatts 
(d) 25 nC in coulombs 
(e) 150 pF in nanofarads 
(f) 60 MW in gigawatts 
(g) 150 i~J in millijoules 
(h) 220 f~ in kilohms 
(i) 55 Mf~ in milliohms 
(j) 100 N in kilonewtons. 

1.6 PROBLEMS 

1 Determine the dimensions of magnetic field strength (H) which is 
measured in amperes per metre. 

2 The permeability (/x) of a magnetic medium is the ratio of magnetic flux 
density (B) to magnetic field strength (H). Determine its dimensions. 

3 Obtain the dimensions of electric flux which is measured in coulombs. 

4 Electric flux density (D) is electric flux per unit area. Obtain its 
dimensions. 

5 Find the dimensions of electric field strength whose unit is the volt per 
metre. 

6 Check the validity of the statement that the volt per metre is equivalent to 
the newton per coulomb. 
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7 The permittivity (E) of the medium of an electric field is the ratio of 
electric flux density (D) to electric field strength (E). Find its dimensions. 

8 The power in watts dissipated in a resistance R ohms through which is 
flowing a current of I amperes is given by P - I a R  b. Use dimensional 
analysis to obtain the values of a and b. 

9 'The energy (in joules) stored in an inductor having an inductance of L 
henry through which a current of I amperes is flowing is given by 
W = (L2I)/2. ' Check whether this statement is true using dimensional 
analysis. 

10 The maximum torque of a three-phase induction motor is given by 
Tma x = kE2aX2bof where k is a constant, E2 is the rotor-induced emf 
measured in volts, )(2 is the rotor reactance measured in ohms and 60 is the 
angular frequency measured in radians per second. Determine the values 
of a, b and c. 

11 The force between two similar magnetic poles of strength p webers 
separated by a distance d metres in a medium whose permeability is/z is 
given by F = kpatzbd c. Obtain the values of a, b and c. 

12 Given that the power (in watts) is the product of potential difference (in 
volts) and current (in amperes), obtain a value for the power in megawatts 
(MW) dissipated in a resistance when the current through it is 0.35 kA and 
the potential difference across it is 4.15 • 108 IxV. 



2 Electric circuit elements 

2.1 ELECTRICITY 

The atoms which make up all things consist of a number of particles including 
the electron, the proton and the neutron. The others are more of interest to 
physicists than to engineers. The electron has a mass of 9.11 • 10 -31 kg and 
carries a negative electric charge; the proton has a mass of 1.6 • 10 -27 kg and 
carries a positive electric charge equal in magnitude to the negative charge of 
the electron; the neutron has the same mass as the proton but carries no electric 
charge. Apart from the hydrogen atom, which has one electron and one proton 
but no neutrons, all atoms contain all three of these subatomic particles. Atoms 
are normally electrically neutral because they have the same number of 
electrons as they have protons. If some electrons are removed from the atoms 
of a body, that body becomes positively charged because it will have lost some 
negative electricity. Conversely, a body which gains electrons becomes neg- 
atively charged (if you comb your hair the comb will gain some electrons and 
your hair will lose some). Positively charged bodies attract negatively charged 
bodies and repel other positively charged bodies (which is why the comb can 
make your hair stand on end!). 

The total surplus or deficiency of electrons in a body is called its charge. The 
symbol for electric charge is Q and its SI unit is the coulomb (C) in honour of 
Charles Coulomb (1736-1806), a French physicist. The smallest amount of 
known charge is the charge on an electron which is 1.6 • 10 -19 C. It follows that 
6.25 • l 0  Is electrons (1/1.6 • 10 -19) are required to make up 1 C of charge. 

When electric charges are in motion they constitute an electric current which 
we call electricity. 

Electricity is a very convenient form of energy. It is relatively easy to produce 
in bulk in power stations whether they be coal fired, oil fired or nuclear (using 
steam turbines to drive the generators) or hydro (using water turbines to drive 
the generators). A modern coal-fired or nuclear power station typically 
produces 2000 MW using four 500 MW generators driven by steam turbines at 
3000 r/min. The steam required to drive the turbines is raised by burning coal 
or from the heat produced in a nuclear reactor. Once generated it is 
transmitted, by means of overhead lines or underground cables, to load centres 
where it is used. Since generation takes place at about 25 kV, transmission at up 
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to 400 kV, and utilization at around 240 V to 415 V, transformation of voltage 
levels is required and is conveniently carried out using the transformer. Finally, 

in use it is extremely flexible and most industrial and domestic premises rely 

heavily on it for lighting and power. 

2.2 ELECTRIC CIRCUITS 

Electric circuits or networks are the assemblage of devices and or equipment 
needed to connect the source of energy to the user or the device which exploits 
it. Communications systems, computer systems and power systems all consist of 
more or less complicated electric circuits which themselves are made up of a 
number of circuit elements. The devices and equipment mentioned above may 
be represented by 'equivalent circuits' consisting of these circuit elements, and 
an equivalent circuit must behave to all intents and purposes in the same way as 
the device or equipment which it represents. In other words, if the device were 
put into one 'black box' and the equivalent circuit were put into another 'black 
box', an outside observer of the behaviour of each would be unable to say 
which black box contained the real device and which contained the equivalent 
circuit. In practice it is virtually impossible to achieve exact equivalence. 

2.3 CIRCUIT ELEMENTS 

Circuit elements are said to be either active (if they supply energy) or passive 
and the elements which make up a circuit are" 

�9 a voltage or current source of energy (active elements); 

�9 resistors, inductors and capacitors (passive elements). 

Energy sources 

There are two basic variables in electric circuits, namely electric current and 
electric potential difference (which we will often call voltage for short). A 
source of energy is required to cause a current to flow and thereby to produce 
electric voltages in various parts of the circuit. Energy is work and is measured 
in joules (J) in honour of James Prescott Joule (1818-89), a British scientist. 
When a force (F newtons) moves a body through a distance (d metres) the work 
done is (F x d) joules. 

Example 2.1 

Calculate the work done when a force of 10 N moves a body through a distance 

of 5m.  
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Solution 

The work done is force times distance moved = F x d - 10 x 5 = 50 J. 

Voltage source 

An ideal voltage source is independent of the current through it. Its electro- 
motive force (emf) or voltage is a function of time only. If a thick copper wire 
were connected across its ends the current through it would be infinite. The 
symbol for an ideal voltage source is shown in Fig. 2.1. 

Ao Q oB 

E orV 
Figure 2.1 

The electric potential difference between two points is defined as being the 
work required to move a unit positive charge (i.e. 1 C) between them. The unit 
is called the volt (V) in honour of Alessandro Volta (1745-1827), the Italian 
inventor of the electric battery. A potential difference of 1 V exists between 
two points when one joule of work (1 J) is required to move 1 C from the point 
of lower potential to that of the higher potential. 

Example 2.2 

Calculate (1) the work done when 300 C of charge is moved between two points 
having a potential difference of 100 V between them; (2) the potential 
difference between two points A and B if 500 J of work is required to move 
2 mC from A to B. 

Solution 

1 Work done = charged moved x potential difference through which it is 
moved 

=QV 
= 300 x 100 = 30 kJ 

2 Potential difference = work done/charge moved = 500/2 x 10 -3 = 250 kV 
with point B at the higher potential. 

Current source 

An ideal current source is independent of the voltage across it and if its two 
ends are not connected to an external circuit the potential difference across it 
would be infinite. The symbol for a current generator is shown in Fig. 2.2. 

A steady flow of electric charges which does not vary with time is called a 
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Ao ( ~  oB 
I 

Figure 2.2 

direct current. The symbol for current is I and its unit is called the ampere (A) 
in honour of Andre Ampere (1775-1836), a French mathematician and 
scientist. When 1 C of charge passes a given plane of reference in one second it 
represents a current of 1 A, thus 

I = dQ//dt (I is the rate of change of charge) (2.1) 

It follows that when a current of I amperes flows for T seconds the charge 
moved is given by 

T 

O = f I  dt (2.2) 
0 

Example 2.3 

Calculate (1) the time needed for a current of 10 A to transfer 500 C of charge 
across a given plane of reference; (2) the current flowing if 200 C of charge 
passes between two points in a time of 10 s. 

Solution 

1 From Equation (2.1) we have that I = dQ/dt, therefore 
t= Q/I  = 500/10 = SOs 

2 Again I = dQ/dt = 200/10 = 20 A 

Resistance 

Materials within which charges can move easily are called conductors. Exam- 
ples of good conductors are copper and aluminium in which electrons can move 
easily but cannot easily move away from the surface and out of the metal. These 
materials are said to have a low resistance. Materials within which charges 
cannot move or can move only with great difficulty are called insulators. These 
materials are said to have a high resistance, and examples of good insulators are 

glass and mica. 

Ohm's law 
Experiment shows that for many conducting materials the current (I) passing 
through the material from one end to the other is proportional to the potential 
difference appearing across its ends. Mathematically this is stated as I oc V or 
V ~ I. We can replace the proportionality sign (~) by an equality sign if we 
introduce a constant of proportionality. Thus we write 
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v = n I  (2.3) 

where R is the constant of proportionality and is called the resistance of the 

conducting material. This is known as Ohm's  law. 
Rearranging Equat ion (2.3), we obtain the defining equation R = VII and we 

note that the unit of resistance is the unit of voltage divided by the unit of 
current, i.e. the volt per ampere. This is called the ohm, symbol D, in honour  of 
Georg Ohm (1787-1854), a German  scientist. Materials which obey Ohm's  law 
are known as linear or ohmic materials. 

Virtually all devices and equipment  have inherent resistance. A circuit 
element designed specifically to have resistance is called a resistor. There are 
two circuit symbols commonly used for resistance and either is perfectly 

acceptable. These are shown in Fig. 2.3 together with the characteristic graph. 

I R V 
+ ' ~ N ~ "  

" * v  = 
I +~ R 

~ i'-- 

V 0 I 

F igure  2.3 

The point of entry of the current in a resistor is always positive with respect to 
the point of exit so far as potential difference is concerned. 

Example 2.4 

Find the unknown quantities in the diagrams of Fig. 2.4. 

F igu re  2.4 

A , R B A I B B A 5A r'~ l f~ ~ 2D 
"- "-' ' VB _6V  [ I - 3 V  5A l__. I - 6 V  

10V V 

(a) (b) (c) 

Solution 

(a) Using Ohm's  law we have that R = VII = 10/5 = 2 D 

(b) Again from V = IR we see that V (the voltage across the 
resistor) = 5 x 1 = 5 V. Since the current enters end A, it is at a higher 

potential than end B, so VB = VA -- 5 = --6 -- 5 = --11 V 

(c) Since end B is at a higher potential than end A, the current must enter end 

B. The potential difference across the resistor is 3 V so that 
I = V/R = 3/2 - 1.5 A, flowing from right to left through the resistor. 
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Resistivity 
The resistance of a conductor is directly proportional to its length (1) and 
inversely proportional to its cross-sectional area (A). Mathematically then 
R ~ l/A. This may also be written as 

R = pl/A (2.4) 

where p is the constant of proportionality and is called the resistivity of the 
material of the conductor. Its unit is obtained by rearranging the above 
equation to make p the subject so that p = RA/ l  and we see that the unit of p is 
the unit of R (11) multiplied by the unit of A(m 2) divided by the unit of I (m), i.e. 
(~  mE)/m = 1~ m. The unit of p is therefore the ohm-metre. Sometimes it is 
convenient to use the reciprocal of resistance which is called conductance (G) 
for which the unit is the siemens (S). Ernst Werner yon Siemens (1816-92) was 
a German inventor. The reciprocal of resistivity is conductivity (tr) for which 
the unit is the siemens per metre (S m-a). Thus we have that G - 1/R = A/pl  
and since cr = 1/p we have 

G -  o'A/l (2.5) 

Example 2.5 

A copper rod, 20 cm long and 0.75 cm in diameter, has a resistance of 80 p~l). 
Calculate the resistance of 100 m of wire, 0.2 mm in diameter drawn out from 
this rod. 

Solution 

From Equation (2.4), the resistance of the rod is given by RR = plR/AR SO that 
p = RRAR/lR where AR is the cross-sectional area of the rod and lR is its length. 
Putting in the values 

p---{80 X 10-6X [~r(0.0075)z/4]}/0.2 = 1.77 x 10-8 1~ m 

For the wire Rw - plw/Aw where Rw is the resistance of the wire, Aw is the 
cross-sectional area of the wire and lw is its length. Putting in the values, 

Rw = [1.77 x 10-8x 100]/~r(0.0001)2 = 56 a 

Table 2.1 illustrates the enormous range of values of resistivity (and con- 
ductivity) exhibited by various materials. We shall see in the next section that 
resistance (and resistivity and conductivity) varies with temperature; the values 
given here are at 20 ~ Remember:  the higher the conductivity the better the 
conductor: 
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Table 2.1 

Material Conductivity (S m -1) Resistivity (11 m) 

Silver 6.1 x 107 1.64 x 10 -8 
Copper  5.7 x 107 1.75 x 10 -8 
Carbon 3 x 104 3.33 • 10 -5 
Distilled water  1 • 10 -4 1 • 104 
Glass 1 X 10 -12 1 X 1012 
Mica 1 x 10-15 1 x 1015 
Quartz  1 X 10 -17 1 X 1017 

Resistors M series 
If a number of resistors are connected as shown in the diagram of Fig. 2.5 they 

I 

V 

R1 I R2 I R3 

IR1 IR2 IR3 

I 

Figure 2.5 

are said to be in series. Resistors are in series, therefore, if the same current 
flows through each of them. In the diagram of Fig. 2.6, for example, only the 
resistors R5 and R 6 a r e  in series with each other. Resistor R~ is in series with the 
combination of all the others. 

Figure 2.6 

I1 R1 l 
o > [" I 

R2 R5 R6 

5 

IR4 R7 ti3 R3 ! 
I6 

t , ~ t ! o 

By Ohm's law the potential difference across the resistors R1, R2 and R3 in 
Fig. 2.5 is given by IRA, IR2 and IRa, respectively. The total potential difference 
between the terminals A and B is therefore I R  1 + I R  2 + I R  3 = I[R~ + R 2 + R3]. 

Although this seems obvious, we have, in fact, anticipated Kirchhoff's voltage 
law which will be stated formally in Chapter 3. A single resistor which would 
take the same current (I) from the same source (V) would have to have a 
resistance of [R 1 + R2 4-R3]. The equivalent resistance (R~q) of the three 
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resistors in series is therefore  the sum of the three individual resistances. In 

general,  for n resistors is series, R~q = R~ + R2 + "" + Rn. In short  this can be 
wri t ten 

n 

Req = a~,=lRa (2.6) 

Example 2.6 

Dete rmine  (1) the current  flowing in the circuit of Fig. 2.7, (2) the voltage 
across each resistor. 

Figure 2.7 

I 5~ 10~ 20~ 15~ 
I ! I I ! I I I 

R1 R2 R3 R4 

200V 

Solution 

1 Using Ohm ' s  law I = V/Req and from Equa t ion  (2.6), 

Req = R 1 + R 2 + R 3 + R4, s o  Req = 5 + l 0  -+- 20 + 15 = 50 11. Therefore  
I = 200/50 = 4 A 

2 Again,  from Ohm' s  law V R 1  = I R  1 = 4 • 5 = 20 V 

V R 2  - -  I R  2 - -  4 x 10 = 40 V 

VR3 = IR3 = 4 • 20 = 8 0 V  

VR4 = IR4 = 4 X 15 = 6 0 V  

Note  that  these add up to 200 V, which is the voltage of the supply. 

Voltage division 

al I i 

i l<V1 

R2 
F - - - - t  

V2 

Figure 2.8 

For  the two resistors shown connected  in series in Fig. 2.8, V - I [R  1 + R 2 ] .  Also 

V 1 -= I g  1 s o  that  
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V1 /V  = IR1 / [ I (R  1 + R2) ] 

and 

V, = R 1 V / ( R ,  + R2) (2.7) 

Similarly, 

V2 = R2V/(Ra + R2) (2.8) 

This shows that the ratio of the voltage across a resistor in a series circuit to the 
total voltage is the ratio of the resistance of that resistor to the total 
resistance. 

Example 2.7 

The diagram of Fig. 2.9 shows a variable resistor R~ in series with a fixed resistor 
R2 = 30 lq. Determine (1) the voltage V2 appearing across R2 when R 1 is set at 
20 lq; (2) the value to which R~ must be set to make the voltage across 
R2(V2) = 150 V. 

R, R2 
- - - - q / / 1  ! I 

 oovC) 

Figure 2.9 

Solution 

1 From Equation (2.8) we have 
V2 = RzV/(R1 + R2) = 30 x 200/(20 + 30) = 120 V 

2 Rearranging Equation (2.8) to make R~ the subject, we have 
R1 = (REV/V2) - R2. Putting in the numbers, 

R, = {(30 x 200) /150}-  3 0 -  4 0 -  3 0 -  10 D, 

Resistors M parallel 
If a number of resistors are connected as shown in Fig. 2.10 they are said to be 
in parallel. Resistors are in parallel if the same voltage exists across each one. 

The total current I is made up of 11 flowing through R1, 12 flowing through R2 
and 13 flowing through R3 and by Ohm's law these currents are given by V/R1, 
V/R 2 and  V/R3, respectively. It follows that I -  I~ + I2 + 13 (again this seems 
obvious but this time we have anticipated Kirchhoff's current law which is 
formally introduced in Chapter 3). So 
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R2 t i3 

Figure 2.10 

I = (V/R~) + (V/R2) + (V/R3) = V[(1/R1) + (1/R2 + (l/R3)] (2.9) 

If a single resistor Req connected across the voltage source (V) were to take the 
same current (/) then 

I = V/Req (2.10) 

Comparing Equations (2.9) and (2.10) we see that 

1/Req = l / R ,  + 1//R2 + 1//R3 

In general for n resistors connected in parallel 

1 / / R e q -  l /R1 + 1//R2 + 1/R3 + "'" + 1 /R ,  (2.11) 

Since conductance (G) is the reciprocal of resistance (G = 1 /R)  we see that 

Geq = G 1 + G 2 + - . .  + G~ (2.12) 

The equivalent conductance of a number of conductances in parallel is thus the 
sum of the individual conductances. 

Example 2.8 

Determine the current I flowing in the circuit of Fig. 2.11. 

Figure 2.11 

C 100V [~lOfl 5fl 25fl 

Solution 

I = V/Req - VGeq where Req and Geq are,  respectively, the equivalent resistance 
and conductance of the parallel combination. From Equation (2.12), 
Geq = G~ + G 2 + G 3 = 1/10 + 1,/5 + 1/25 = 0.1 + 0.2 + 0.04 = 0.34 S. There- 
fore 
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I = VGeq = 100 x 0.34 = 34 A 

Often we meet just two resistors connected in parallel and it is useful to 
remember that since 1/Req = 1/R1 + 1/R2 = (R~ + Rz)/RIR2 then 

Req = R1R2/(R1 + R2) (2 .13)  

i.e. the equivalent resistance of two resistors in parallel is their product divided 
by their sum. 

Current division 

In Fig. 2.12 the total current (I) is made up of 11 flowing through resistor R 1 and 

t I2 

' [-~R2 

Figure 2.12 

12 flowing through resistor R 2 and by Ohm's law Ia 
fore 

= V/R1, I2 : V/R2 there- 

I = 11 + I2 = V [ ( 1 / R a  + (l/R2)] 
= V(R1 + R2)//RIR2 

11/1 = (V/R1) /V(R1 + Rz)/R~R2 = Rz/(R1 + R2) 

So 

la = R2I/(R1 + R2) 

Similarly 

I2 = Rfl / (Ra + R2) 

(2.14) 

(2.15) 

Example 2.9 

Determine the current 12 and the voltage V in the circuit of Fig. 2.13. 

S o l u t i o n  

From Equation (2.15), I2 = RII / (R,  4- R2) -- 10 x 20/(10 + 40) = 4 A. 
From Equation (2.13) Req = R1R2/(R1 + R 2 )  - -  400/50 = 8 f~ 

V = I R e q -  20 • 8 = 160 V 
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F igure 2.13 

20A 

O V 

1 
I2 

R1 = lOf~ R2 = 40t2 

Example 2.10 

The circuit of Fig. 2.14 is a series-parallel circuit. Calculate (1) the current 
drawn from the supply (I); (2) the potential  difference across the resistor R 4 

(V4); (3) the current through the resistor R 6 (/6)" 

(- 

I R1 = 10t2 

IOOV 

R2 = 5f~ 
I 1 

R3 = 20f~ 
l 

R4 = 25t2 
I ! 

R5 = 1 0 ~  

Figure 2.14 

Solution 

The equivalent resistance of the parallel combination of resistors R5 and R6 is 
given by 

R56 = R s R 6 / ( R  5 + R6) = 10 • 30/(10 + 30) = 300/40 = 7.5 12 

For the parallel combination of the resistors R2, R3 and R4 the equivalent 
resistance is given by 

1/R234 = 1/R2 + 1/R3 + 1/R4 = 0.2 + 0.05 + 0.04 = 0.29 S 

Therefore R234 = 1/0.29 - 3.45 ~.  

The equivalent resistance of the whole series-parallel circuit is given by 

Req -- R 1 + R234 -F R56 so  Req - 10 + 3.45 + 7.5 = 20.95 II 

I = V/Req = 100/20.95 = 4.77 A 

V 4 : I R 2 3 4  : 4.77 • 3.45 = 16.46 V 

I 6 : R 5 I / ( R  5 Jr" R 6 ) :  10 X 4.77/40 = 1.19 A 
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Internal resistance 
It was stated earlier in the chapter that an ideal voltage source is independent of 
the current flowing through it. Practical voltage sources have internal resistance 
which means that the voltage at its terminals varies as the current through it 
changes. The equivalent circuit of a practical voltage source then takes the form 
shown in Fig. 2.15 where r represents the internal resistance of the source and 
A and B are its terminals. The terminal voltage is thus VAB. 

, r,,, B 
E V~ 

Figure 2.15 

Example 2.11 

A battery has an internal resistance of 0.5 f~ and a terminal voltage of 15 V 
when it supplies no current. Determine the terminal voltage when the current 
through it is 5 A. 

Solution 

The diagram is as shown in Fig. 2.15. Let the battery terminal voltage when it 
supplies no current be E (this is called the open circuit voltage). Then, when a 
current I flows, the terminal voltage VAB = E -  Ir  where r is the internal 
resistance. When I = 5 A, VAB = 15 -- 5 • 0.5 = 15 -- 2.5 = 12.5 V. 

Effect of temperature 
The resistance of metals increases with temperature while for insulators it 
decreases with temperature.  There are some materials for which there is 
virtually no change in resistance over a wide range of temperatures. 

For a given material it is found that 

R = Rs[1 + a ~ ( T -  T~)] (2.16) 

where R is the resistance at a temperature T, Rs is the resistance at temperature 
T~, and as is the temperature coefficient of resistance corresponding to T~ and is 
defined as the change in resistance per degree change of temperature divided 
by the resistance at some temperature Ts. It is measured in (~ -1) which is read 
as 'per degree Celsius'. For a standard temperature Ts = 0 ~ as for copper is 
0.0043 per ~ for manganin (an alloy of copper, magnesium and nickel) it is 
0.000 003 per ~ 

If a certain material has a resistance of R0 at a standard temperature of 0 ~ 
and a resistance temperature coefficient of a0, then at temperatures T1 and T2, 



respectively, its resistance will be 

R2 = Ro[1 + aoT2] from which we see that  

RI /R2  = [1 + a0T1]/[ l  + a0T2] 

Example 2.12 
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given by R 1 - R o [ 1  + aoT1] and 

(2.17) 

A copper  coil has a resistance of 100 fl at a t empera tu re  of 40 ~ Calculate its 

t empera tu re  at 100 ~ Take  a0 to be 0.0043 per  degree C. 

Solution 

F r o m  Equa t ion  (2.17) we have tha t  R 1 / R  2 - [1 + aoT~]/[1 + a0T2]. In this case, 

R1 = 100 l-l, 7"1 = 40 ~ and T2 = 100 ~ Rear ranging  Equa t ion  (2.17) to make  

R2 the subject, we have 

R2 = [1 + aoT2]R1/[1 + aoT~] - [1 + 0.43] • 100/[1 + 0.172] = 122 l)  

Colour code for resistors 
Some resistors are coded by means  of colour bands at one end of the body of 

the resistor. The  first band indicates the first digit of the value of the resistance, 

the second band gives the second digit and the third band gives the number  of 

zeros. If there  is a fourth band this tells us the percentage  tolerance on the 

nominal  value. The  colour codes are given in Table 2.2. 

Table 2.2 

First, second and third band Fourth band (% tolerance) 

black = 0 
brown = 1 
red = 2 
orange = 3 
yellow = 4 
green = 5 
blue = 6 
violet = 7 
grey = 8 
white = 9 

gold = 5 
silver = 10 
none = 20 

Red 

il II ][ 
/ \ 

Red Brown 

Orange Red Green Red 
\ / \ / 
| l  IJ IJ II I II I1 rl II ! 

/ \ / \ 
White Silver Blue Gold 

Figure 2.16 

Example 2.13 

(a) (b) (c) 

Write  down the nominal  value of the resistance of each of the resistors shown in 
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Fig. 2.16. If they are connected in series, determine the maximum possible 
resistance of the combination. 

Solution 

(a) The first band is red so the first digit is 2; the second band is red so the 
second digit is 2; the third band is brown so there is one zero. There is no 
fourth band so that the tolerance is 20 per cent. The nominal value of this 
resistor is therefore 220 f~ and its tolerance is 20 per cent so that its 
resistance should lie between 220 - 44 = 176 f~ and 220 + 44 = 264 f~. 

(b) The first band is orange so the first digit is 3; the second band is white so 
the second digit is 9; the third band is red so there are two noughts; the 
fourth band (silver) means that the tolerance is 10 per cent. The nominal 
value of this resistor is therefore 3900 12 (3.9 kf~) and its value lies 
between 3510 f~ ( - 1 0  per cent) and 4290 I~ (+10 per cent). 

(c) The bands on this resistor represent 5 (first digit), 6 (second digit) and red 
(two zeros) so its nominal value is 5600 f~ (5.6 kO). The fourth band (gold) 
means that its tolerance is +_5 per cent and so its value must be within the 
range 5320 f~ (5.32 kf~) to 5880 I~ (5.88 kf~). 

If these resistors were to be connected in series the equivalent resistance of the 
combination would lie between 9006 lq (9.006 kf~) and 10 434 f~ (10.434 kf~). 

Non-linear resistors 

A resistor which does not obey Ohm's law, that is one for which the graph of 
voltage across it to a base of current through it is not a straight line, is said to be 
non-linear. Most resistors are non-linear to a certain degree because as we have 
seen the resistance tends to vary with temperature which itself varies with 
current. So the term non-linear is reserved for those cases where the variation 
of resistance with current is appreciable. For example, a filament light bulb has 
a resistance which is very much lower when cold than when at normal operating 
temperature. 

Capacitance 
If we take two uncharged conductors of any shape whatever and move Q 
coulombs of charge from one to the other an electric potential difference will be 
set up between them (say V volts). It is found that this potential difference is 
proportional to the charge moved, so we can write V ~ Q or Q ~ v. Introducing 
a constant we have 

Q = C V  (2.18) 
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where C is the constant of proportionality and is called the capacitance of the 
conductor arrangement. It is a measure of the capacity for storing charge. 

An arrangement of conductors having capacitance between them is called a 
capacitor and the conductors are called plates. The circuit symbol for a 
capacitor is always as shown in Fig. 2.17 whether the plates themselves are 
parallel plates, concentric cylinders, concentric spheres or any other configura- 
tion of conducting surfaces. The unit of capacitance is the farad (F) named in 
honour of Michael Faraday (1791-1867), an English scientist. 

+Q~-Q 
+ o  o -  

V 

Figure 2.17 

It is found that the capacitance of a capacitor depends upon the geometry of 
its plates and the material in the space between them, which Faraday called the 
dielectric. For a given arrangement of the plates the capacitance is greater with 
a dielectric between the plates than it is with a vacuum between them by a 
factor which is constant for the dielectric. This constant is called the relative 
permittivity of the dielectric, symbol Er and is dimensionless. The absolute 
permittivity (E) of a dielectric is then Er multiplied by the permittivity of free 
space (E0) so that 

E--- ~01~r (2.19) 

For a vacuum, by definition, E r - -  1. 
Permittivity is a very important constant in electromagnetic field theory and 

relates electric field strength (E) to electric flux density or displacement (D). In 
fact 

D = EE (2.20) 

The capacitance of some commonly encountered conductor configurations is 
given below. 

�9 Parallel plates of cross-sectional area A and separation d: 

C = AE/d  farad (2.21) 

�9 Concentric cylinders of radii a (inner cylinder) and b (outer cylinder) of 
which a coaxial cable is an important example: 

C = 2~r41n(b/a)  farad per metre (2.22) 

�9 Parallel cylinders of radii r and separation d of which overhead transmission 
lines are an important example: 
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C = rrE/ln(d/r) farad per metre 

Example 2.14 

(2.23) 

Two parallel plates each of area 100 cm 2 are separated by a sheet of mica 
0.1 mm thick and having a relative permittivity of 4. 

(1) Given that the permittivity of free space (e0) - 8.854 • 10 -12 F//m, 

calculate the capacitance of the capacitor formed by this arrangement.  

(2) Determine the charge on the plates when a potential difference of 400 V 
is maintained between them. 

Solution 

From Equat ion (2.21) the capacitance is given by C -  A eoe.r/d. In this case 
A = 100 • 10 -4 m 2", d = 0.1 x 10 -3 m', E~ = 4 and E0 = 8.854 x 10 -12 F/m.  

Therefore 

C = 100 x 10 -4 x 8.854 x 10 -12 x 4/(0.1 x 10 -3) = 3.54 nF 

From Equat ion (2.18) Q = CV = 3.54 x 10 -9 • 400 - 1.4 txC. 

Capacitors in series 
Capacitors connected as shown in Fig. 2.18 are said to be in series. Applying a 
voltage V will cause a charge + Q to appear  on the left-hand plate of C1 which 
will attract electrons amounting to - Q  coulombs to the right-hand plate. 
Similarly, a charge of - Q  appears on the right-hand plate of C2 which will repel 
electrons from its left-hand plate, leaving it positively charged at + Q. Thus the 
charge throughout  this series combination is of the same magnitude (Q). 
Remember  that electric current is charge in motion and that the current at 
every point in a series circuit is the same. We have seen that Q - CV so that 

V1 = Q/C1 and V2 = Q/C2. 
A single capacitor which is equivalent to the series combination would have 

to have a charge of Q coulombs on its plates and a potential difference of 

(1/1 + 1/2) volts between them. The capacitance of this equivalent capacitor is 

therefore given by Ceq-" Q/V and so V = Q/Ceq. Since V = V1 + V2 then 

Q/Ceq = Q/c1 + Q/c2 and 

Ac 

C 
B( 

V 

+QtI-Q +QII-Q 
C1 C2 

Figure 2.18 
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1/Ceq = 1/C1 + 1/C2 

In general for n capacitors in series we have, for the equivalent capacitance, 

1/Ceq = l / C ,  + 1/C2 + "'" + l /C, ,  (2.24) 

Note that this is of a similar form to the equation for resistors in parallel. 

Capacitors in parallel 
Capacitors connected as shown in Fig. 2.19 are said to be in parallel. We have 

V 

B 

Figure 2.19 

that Q1 - -  C 1 V  and that Q2 = C2V. A single capacitor which is equivalent to the 
parallel combination would have to have a potential difference of V volts 
between its plates and a total charge of Q1 + Q2 on them. Thus 

Ceq-- (Q1 + Q2)/V -- ( c1v  q" c 2 v ) / v -  c1 q- c2 

In general for n capacitors connected in parallel 

Ce q = C 1 q- C 2 -Jr-...-+- C n (2.25) 

Note that this is of the same form as the equation for a number of resistors in 
series. 

Example 2.15 

Determine the values of capacitance obtainable by connecting three capacitors 
(of 5 ~F, 10 p.F and 20 ~F) (1) in series, (2) in parallel and (3) in series- 
parallel. 

Solution 

Let the capacitors of 5 IxF, 10 I,F and 20 IxF be C~, C2, and C3, respectively. 

1 From Equation (2.24) the equivalent capacitance is the reciprocal of 
(1//C~ + 1/C 2 + 1//C3)i.e. 
1/[(1/5) + (1/10) + ( 1 / 2 0 ) ] -  1/[0.2 + 0.1 + 0.05] = 1/0.35 = 2.86 ~F 

2 From Equation (2.25) the equivalent capacitance is 
C~ + C2 + C3 = 5 + 10 + 20 = 35 I,F 
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3 (a) When C1 is connected in series with the parallel combination of C2 and 
C3 the equivalent capacitance is the reciprocal of 
[1/C 1 + 1 / (C  2 + C3) ] -- 1/[1/5 + 1/30] = 1/[0.2 + 0.033] - 4.29 IxF 

(b) Similarly when C2 is in series with the parallel combination of C3 and C1 
the equivalent capacitance is 
1/[1/10 + 1/251 = 1/[0.1 + 0.041 - 1/0.14 - 7.14 ~F 

(c) Similarly when C3 is in series with the parallel combination of C~ and C2 
the equivalent capacitance is 
1/[1/20 + 1/15] = 1/[0.05 + 0.066] = 1/0.116 - 8.62 txF 

Variation of potential difference across a capacitor 
From C V  = Q = f i  dt we have that 

v = ( 1 / C ) f i  dt (2.26) 

It follows that the voltage on a capacitor cannot change instantly but is a 
function of time. 

Inductance 

A current-carrying coil of N turns, length l and cross-sectional area A has a 
magnetic field strength of 

H = ( N I / l )  amperes per metre (2.27) 

where I is the current in the coil. The current produces a magnetic flux (~b) in 
the coil and a magnetic flux density there of 

B = (dp/A) teslas (2.28) 

The vectors H and B are very important in electromagnetic field theory. 
If the coil is wound on a non-ferromagnetic former or if it is air-cored, then 

B ~ H and the medium of the magnetic field is said to be linear. In this case 

B = ~0H (2.29) 

where /~0 is a constant called the permeability of free space. Its value is 
47r x 10 -7 SI units. If the coil carries current which is changing with time then 
the flux produced by the current will also be changing with time and an emf is 
induced in the coil in accordance with Faraday's law. This states that the emf 
(E) induced in a coil or circuit is proportional to the rate of change of magnetic 
flux linkages (A) with that coil (E ~ dA/dt). Flux linkages are the product of the 
flux (~b) with the number of turns (N) on the coil, so E ~ d(Nch)/dt .  It can be 
shown that the magnitude of the emf induced in a coil having N turns, a cross- 
sectional area of A and a length I and which carries a current changing at a rate 
of d I / d t  ampere per second is given by 

E = [ ( t zoN2A) /1](dI /d t )  (2.30) 
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The coefficient of dI /d t  (i.e. tzoN2A/l) is called the coefficient of self-inductance 
of the coil or, more usually, simply the inductance of the coil. A coil having 
inductance is called an inductor. The symbol for inductance is L and so 

L = (tzoN2Z)/l  (2.31) 

Substituting in Equation (2.30) we have 

E = L(dI /d t )  (2.32) 

From Equation (2.32) we see that the unit of L is the unit of E times the unit of 
t divided by the unit of I, i.e. the volt-second per ampere (V s A-l). This is 
called the henry in honour of Joseph Henry (1797-1878), an American 
mathematician and natural philosopher. 

A coil has an inductance of 1 henry when a current changing in it at the rate 
of 1 ampere per second causes an emf of 1 volt to be induced in it. The circuit 
symbol for inductance is shown in Fig. 2.20. 

Figure 2.20 

L 
o ~ o 

Non-linear inductance 
If the coil is wound on a ferromagnetic former it is found that the flux density B 
is no longer proportional to the magnetic field strength H (i.e. the flux produced 
is not proportional to the current producing it). We now write 

B = / z H  (2.33) 

where /z  = j t / , r / . / ,0  and is called the permeability of the medium of the field. It 
(and/Zr, the relative permeability) varies widely with B. The inductance is now 
given by 

L = tXotxrN2A/l (2.34) 

This also varies with B (and H and current) and so is non-linear. 

Example 2.16 

(1) A wooden ring has a mean diameter of 0.2 m and a cross-sectional area of 
3 cm 2. Calculate the inductance of a coil of 350 turns wound on it. 

(2) If the wooden ring were replaced by one of a ferromagnetic material 
having a relative permeability of 1050 at the operating value of magnetic 
flux density, determine the new value of inductance. 
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Solution 

1 Since the ring, shown in Fig. 2.21, is of wood (a non-ferromagnetic material) 
the inductance of the coil is given by Equation (2.31) with N = 350, 
A = 3 x 10 -4 m 2, l = ,n" x the mean diameter (d) of the coil. Also 
/x0 = 47r x 10 -7 H/m, therefore 

L - (iJ, o N 2 Z ) / / l -  (47r X 10 -7 x 3502 x 3 x 10-4)/0.27r- 73.5 x 1 0 - 6 H  

2 For the ferromagnetic ring we have, from Equation (2.34), that 
L - tZOlXrN2A/l. This is just/Zr times the value in part (1). Thus 

L = 1050 x 73.5 x 10 - 6 =  77.18 x ] 0 - 3 H  

Figure 2.21 

Change of current in an inductor 
Since E = L d I / d t  it follows that 

I = ( 1 / L ) f E  dt (2.35) 

This indicates that the current in an inductor is a function of time and therefore 
cannot change instantaneously. Remember that, in a capacitor, the voltage 
cannot change instantaneously. 

Mutual inductance 

The diagram of Fig. 2.22 shows two coils placed such that some of the flux 
produced by a current in either one will link with the other. These coils are said 
to be mutually coupled magnetically and this is usually indicated in circuit 
diagrams by a double-headed arrow and the symbol M. Transformer windings 
are examples of coupled coils. 

Let the flux produced by the current i~ flowing in coil 1 be 4h~ and that part of 

Figure 2.22 

M 

, ~ 

L~ L2 
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it which links coil 2 be ~b2~. Similarly, let the flux produced in coil 2 be t~2 2 and 
that part of it which links coil 2 be ~b~2. The dots are used to indicate the sense of 
the winding. Thus if current enters the dotted end of coil 1 it will produce a 
magnetic flux in the same direction as that produced by the current in coil 2 
when it enters its dotted end. 

If the current in coil 1 is changing with time then the fluxes 4hl and ~b21 will 
also change with time. In accordance with Faraday's law, therefore, an emf will 
be induced in coil 1 because the flux linking it is changing. The magnitude of 
this emf is given by 

El l - -  d(N1dp11)//dt (2.36) 

and is called a self-induced emf because it is due to the current changing in the 
coil itself. Similarly, the changing flux linkages with coil 2 cause an emf to be 
induced in it and the magnitude of this is given by 

E21 = d(N2 i~21 )/dt (2.37) 

and is called a mutually induced emf because it is caused by the current 
changing in another coil. We saw (Equation (2.32)) that the self-induced emf is 
also given by E l l  --  Lldi~/dt where La is the self-inductance of coil I. 

Similarly the mutually induced emf in coil 2 may be expressed as 

E21 = M12dil/dt (2.38) 

where m12 is called the mutual inductance between the coils 1 and 2. If there are 
only two coils involved there is no need for the double subscript and we can 
simply write E21 - Mdil/dt. If the current in coil 2 is changing with time then 
there will be a self-induced emf E22 set up in it and a mutually induced emf E12 
set up in coil 1 and these are given by 

E22 = L2di2/dt (2.3 9) 

E12-- Mdi2/dt (2.40) 

Coefficient of coupling 
If a lot of the flux produced in one coil links with another coil the coils are said 
to be closely coupled, whereas if only a small amount links, the coils are loosely 
coupled. It can be shown that for two coils of self-inductance La and L 2 placed 
such that the mutual inductance between them is M, then 

M = k~/(L1L2) (2.41) 

where k is called the coefficient of coupling. If k---, 1 the coils are closely 
coupled whereas if k ---, 0 the coils are loosely coupled. If two coils are placed 
with their magnetic axes at right angles to each other then there is no magnetic 
coupling between them and k is virtually zero. 
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Example 2.17 

Calculate the mutual inductance between two coils having self-inductances of 

2.5 mH and 40 mH if 

(1) they are so placed that the coefficient of coupling is 0.8; 

(2) one of the coils is wound closely on top of the other; 

(3) the coils are places as shown in Fig. 2.23. 

L1 
L2 

Figure 2.23 

Solution 

1 From Equation (2.41) we have that 

M = kV/(L~L2) = 0.8V'(2.5 x 40) = 8 mH 

2 Since the coils are wound one on top of the other, then virtually all the flux 
produced will link with both coils and so k = 1. Thus 

M = k~/(LIL2) = V/(2.5 x 40) = 10 mH 

3 In this case the magnetic axes of the two coils are at right angles so that 
there is no magnetic coupling and so k = 0 and M = 0. 

Inductance M series 

The diagram of Fig. 2.24 shows two coils connected in series electrically and 
coupled magnetically. The total emf induced in coil 1 is the sum of the self- 
induced emf due to the current changing in itself and the mutually induced emf 
due to the current changing in coil 2. Thus 

E 1 -- E l l  -k- E 1 2 - -  L~di/dt + Mdi /d t -  (L~ + M)di/dt (2.42) 

Similarly 

E2 = E22 + El2 = L2di/dt + Mdi /d t -  (L2 + M)di/dt 

The total emf induced in the series combination is therefore given by 

(2.43) 

E 1 -~ E 2 = ( L  1 + L 2 + 2M)di/dt ( 2 . 4 4 )  



Figure 2.24 
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This assumes that the coils are wound such that their fluxes are additive (i.e. in 
the same direction). In this case the coils are said to be connected in series 
aiding. 

If the connections to one of the coils were reversed the flux produced by it 
would be reversed and the total emf in coil I would be (L1 - M)di/dt while that 
in coil 2 would be ( L  2 - M)di/dt and the total emf in the series combination 

would be 

E~ + E2- (La + L2-  2M)di/dt (2.45) 

In this case the coils are said to be connected in series opposing. 
A single coil which would take the same current from the same supply as the 

series aiding combination would need to have an inductance equal to 

(L] + L2 + 2M) henry (2.46) 

and this is called the effective inductance of the circuit. Similarly, the effective 
inductance of the series opposing combination is 

(L1 + L 2 -  2M) henry (2.47) 

Example 2.18 

Calculate the effective inductance of the two coils arranged as in Example 2.17 
(1), (2) and (3) if they are connected in (1) series aiding and (2) series 
opposing. 

Solution 

1 Series aiding. 
From expression (2.46) the effective inductance is (L~ + L 2 4- 2M). Now 
L~ = 2.5 mH and L 2 -- 40 mH. 

As connected in Example 2.17 part (1) we calculated M to be 8 mH so 
that the effective inductance is given by 2.5 + 40 + (2 x 8) = 58.5 mH. 

As connected in Example 2.17 part (2) we found M to be 10 mH so that 
the effective inductance becomes 2.5 + 40 + (2 x 10) = 62.5 mH. 



34 Electric circuit elements 

In Example 2.17 part (3) the M was zero so that the effective inductance 
is simply 2.5 + 40 = 42.5 mH. 

2 Series opposing. 
From expression (2.47), the effective inductance is ( L  1 + L 2 - 2M). 

For Example 2.17 part (1) this becomes 2.5 + 40 - (2 x 8) = 26.5 mH. 
For Example 2.17 part (2) it is 2.5 + 40 - (2 x 10) = 22.5 mH. 
For Example 2.17 part (3) the effective inductance is just 

2.5 + 40 = 42.5 mH 

2.4 LUMPED PARAMETERS 

The resistance, capacitance and inductance of transmission lines are not 
discrete but are distributed over the whole length of the line. The values are 
then quoted 'per kilometre' .  When using equivalent circuit models in such cases 

the whole of the resistance, capacitance and inductance are often assumed to 
reside in single elements labelled R, C, and L. These are then called ' lumped 
parameters ' .  

Example 2.19 

A 50 km three-phase transmission line has the following parameters  per 
phase: 

~ resistance: 0.5 1~ per kilometre; 

�9 inductance: 3 mH per kilometre; 

�9 capacitance: 16 nF per kilometre. 

Draw an 'equivalent circuit' for this line. 

Solution 

One approximate method of representing this line would be to assume that the 
whole of the line resistance and inductance is concentrated at the centre of the 
line and that the whole of the line capacitance is concentrated at one end of the 
line. This representation is usually quite acceptable for lines of this length 
because calculations based upon it yield reasonably accurate results. 

�9 The total resistance of the line, R = 0.5 x 50 = 2.5 1~. 

�9 The total inductance of the line, L = 3 x 50 = 150 mH. 

�9 The total capacitance of the line, C = 16 x 50 = 800 nF = 0.8 I~F. 

If the capacitance is considered to be at the sending end of the line, the 
equivalent circuit takes the form shown in Fig. 2.25(a); if the capacitance is 
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placed at the receiving end (or load end) of the line, the equivalent circuit is as 
shown in Fig. 2.25(b). 

Figure 2.25 

2.5 ENERGY STORED IN CIRCUIT ELEMENTS 

The circuit elements having inductance and those having capacitance are 
capable of storing energy. It can be shown that 

�9 the energy stored in a capacitor of C farad across which is maintained a 
potential difference of V volts is given by 

W - ( C V 2 ) / 2  joules (2.48) 

~ the energy stored in an inductor of L henry through which a current of I 
ampere passes is given by 

W = (L12)/2 joules (2.49) 

Example 2.20 

Determine the energy stored in a capacitor of 0.1 ~F when a potential 
difference of 400 V is maintained across its plates. 

Solution 

From Equation (2.48) the energy stored is given by 

W -  CV2/2 - 0.1 X 10 -6 X (400) 2 X 0.5 - 8 X 10 -3 J 

Example 2.21 

Calculate the current required to flow through an inductance of 0.5 H in order 
to store the same amount of energy as that stored by the capacitor in Example 
2.20. 

Solution 

From Equation (2.49) the energy stored is given by W = LI2/2 joules. We know 
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that W = 8 mJ (from Example 2.20) and we have to find I. Rearranging the 
equation to make the current the subject we have I = ~/ (2W/L)  amperes. 
Putting in the numbers, 

I = ~/(2 • 8 • 10-3/0.5 • 10 -3) : X/32 = 5.66 A 

2.6 POWER DISSIPATED IN CIRCUIT ELEMENTS 

Power is the rate of doing work and is measured in watts (W) in honour of 
James Watt (1736-1819), a British engineer. If we denote power by P and work 
by W then 

P : d W / d t  (2.50) 

We may write this as P = ( d W / d e ) ( d Q / d t ) .  Since work is done when charge is 
moved through a voltage we have seen above that W = Q V  so d W / d Q  = V. 
Also we have seen (Equation [2.1]) that d Q / d t  = I. Therefore 

P = VI  watts (2.51) 

Using Ohm's law we can also write 

P : ( I R ) I -  IZR 

and 

(2.52) 

P -  V(V/R)-- V2/R (2.53) 

Any circuit element having resistance and carrying a current will therefore have 
an associated power loss given by I2R watts where R is the resistance in ohms 
and I is the current in amperes. From Equation (2.50), P - dW/dt ,  from which 
it follows that energy is power multiplied by time. The energy lost in the 
element is therefore given by 

W -  I2Rt (2.54) 

where t is the time in seconds for which the element is carrying the current I. 

Example 2.22 

A resistor has a current of 20 A flowing through it and a potential difference of 
100 V across it. Calculate (1) the power dissipated in the resistance; (2) the 
resistance of the resistor; (3) the energy lost in the resistor during each minute 
of operation. 

Solution 

1. From Equation (2.51) the power dissipated is 
P =  V I = 1 0 0  x 2 0 =  2000 W = 2 k W  
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2. From Equation (2.52), R = P/I  2 = 2 0 0 0 / 2 0 2  - 5 

3. From Equation (2.54) the energy lost is 
W = IaRt = 202 X 5 X 60 = 120 000 J = 120 kJ 

Example 2.23 

A generator in a power station generates 200 MW of power at 12.7 kV per 
phase. Calculate the current supplied by the generator. 

Solution 

From Equation (2.51) 

I = P / V  = 200 x 106/12.7 x 10  3 =  15.75 kA 

2.7 SELF-ASSESSMENT TEST 

1 Define a passive circuit element. 

2 State the effect of connecting a copper bar across the terminals of an ideal 
voltage source. 

3 Draw the circuit symbol for an ideal current source. 

4 Give two examples of good conductors of electricity and explain why they 
are good conductors. 

5 State Ohm's law. 

6 Give the unit of resistivity. 

7 What is the reciprocal of conductivity? 

8 Calculate the equivalent resistance of three 10 fl resistors when they are 
connected (1) in parallel (2) in series and (3) in series-parallel. 

9 A voltage source has an open circuit terminal voltage of 15 V and a 
terminal voltage of 12 V when it supplies a current of 20 A to a load 
connected across it. Determine the internal resistance of the source. 

10 Explain the effect of an increase in temperature upon the resistance of a 
resistor. 

11 A resistor has four colour coded bands as follows: red; red; brown; silver. 
Between what limits does the resistance of this resistor lie? 

12 Explain what is meant by 'a non-linear' resistor. 

13 Upon what factors does the capacitance of a capacitor depend? 
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14 Give an expression for the equivalent capacitance of a number of 
capacitors connected in series. 

15 Can the current change suddenly in a capacitor? 

16 Upon what factors does the inductance of an inductor depend? 

17 Under what circumstances is the inductance of a coil variable? 

18 Can the current through an inductor change suddenly? 

19 Two coils of inductance 40 ~H and 10 ~H are placed such that there is a 
coefficient of coupling of 0.8 between them. Determine the mutual 
inductance between them. 

20 If the two coils of Question 19 were connected in series-aiding electrically, 
what would be the effective inductance of the combination? 

21 Explain the meaning of lumped parameters. 

22 Give an expression for the energy stored in a capacitor in terms of its 
capacitance and the potential difference across its plates. 

23 Give an expression for the energy stored in an inductor in terms of its 
inductance and the current passing through it. 

24 Give an expression for the power dissipated in a resistor in terms of its 
resistance and the current passing through it. 

25 Give the relationship between energy and power. 

2.8 PROBLEMS 

1 Determine the equivalent resistance of four resistors connected in parallel 
if their resistances are 1 1), 2 1), 2.5 1) and 10 1). 

2 A 20 1) resistor is connected in series with a 40 1~ resistor and the 
combination is connected in series with three 12 1~ resistors which are 
connected in parallel. Determine the equivalent resistance of the whole 
arrangement. 

3 Calculate the resistance of a 200 m length of copper wire of diameter 
1 mm. The resistivity of the copper is 0.0159 ~1~ m. 

4 Two resistors (R1 = 5 1~ and R2 = 20 1)) are connected in series across a 
100 V supply. Determine the voltage across R~. 

5 If the two resistors in Problem 4 are connected in parallel across the same 
supply, determine the current through R 2. 

6 A battery has an open circuit terminal voltage of 24 V. When it supplies a 
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current of 2 A the terminal voltage drops to 22 V. Determine the internal 
resistance of the battery. 

7 The winding of a motor has a resistance of 98 12 at a temperature of 16 ~ 
After operating for several hours the resistance is measured to be 114 f~. 
Determine the steady state operating temperature of the winding. Take 
the temperature coefficient of resistance to be 0.004 per ~ 

8 A 2.2 kf~ resistor has a tolerance of 10 per cent. What are the colour bands 
on the body of this resistor? 

9 A resistor having colour bands orange, orange, brown and silver is 
connected in parallel with one with bands of yellow, violet, red and gold. 
Determine the limits of resistance values of the combination. 

10 Capacitors of 5 IxF, 10 txF and 20 I~F are connected in series-parallel in all 
possible ways. Calculate the values of capacitance obtainable. 

11 A wooden ring having a mean diameter of 16 cm and a cross-sectional area 
of 2 cm 2 is uniformly wound with 500 turns. A second coil of 400 turns is 
wound over the first such that the coefficient of coupling is unity. Calculate 
the inductance of each coil and the mutual inductance between them. 

12 Calculate the two possible values of effective inductance obtainable by 
connecting the two coils of Problem 11 in series electrically. 

13 Two coils having self-inductances of 100 IxH and 50 txH are placed such 
that the mutual inductance between them is 65 IxH. Determine the 
coefficient of coupling. 

14 The energy stored in a coil having an inductance of 30 IxH is 1.215 mJ. 
Determine the current in the coil. 

15 A capacitor having a capacitance of 0.1 txF has 200 V maintained across its 
plates. Determine the energy stored in it. 

16 A current of 6 A is passed through a resistor having a resistance of 40 fl. 
Determine the power dissipated in the resistor. 
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3.1 INTRODUCTION 

Circuit analysis is important in order to be able to design, synthesize and 
evaluate the performance of electric circuits or networks. The two basic laws 
for circuit analysis are Kirchhoff's current law (KCL), sometimes referred to as 
the first law and Kirchhoff's voltage law (KVL), sometimes called the second 
law. However, a number of techniques have been developed, in the form of 
network theorems, for simplifying the analysis in the case of more complicated 
circuits. These theorems, which are introduced in this chapter, are applicable to 
linear circuits, both a.c. and d.c., but it is convenient to consider d.c. circuits 
only to begin with because they are a little simpler mathematically and the 
concepts are that much easier to grasp. 

When you have studied this chapter you should be able to calculate the 
current, voltage and power in any element of most commonly encountered d.c. 
circuits. 

3.2 DEFINITION OF TERMS 

It will be useful first of all to define terms, and Fig. 3.1 will be used for this 
purpose. It shows a five-element circuit of which one (the battery or voltage 
source) is active and the other four (resistors) are passive. 

1 t R1 I12 R_2 J I2 3 

V R3 

4 
5 

Figure 3.1 

�9 N o d e :  a point at which two or more elements have a common connection is 
called a node. Thus there are six nodes in the circuit, numbered 1-6. 
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�9 S h o r t  circuit:  the connection between nodes 4 and 5 is made with a piece of 
wire having virtually no resistance and is called a short circuit. The 
connection between nodes 5 and 6 is also a short circuit so that nodes 4, 5, 
and 6 are identical nodes and the circuit may be redrawn as shown in Fig. 3.2. 

Figure 3.2 

R1 i o R2 I 1 ~ . ~ 3  

4,5,6 

In a circuit diagram it would be neater to draw the circuit of Fig. 3.1. 

�9 O p e n  circuit:  if the resistor R 1 were removed from the circuit then there is 
said to be an open circuit between nodes 1 and 2. Note that it is incorrect to 
say that there is then no resistance between nodes 1 and 2 because in fact 
there is infinite resistance between them. 

�9 B r a n c h :  a single element or group of elements with two terminals which 
form the only connections to other single elements or groups of elements is 
called a branch. In the diagrams of Figs 3.1 and 3.2 there are three 
branches, one between nodes 6 and 2, one between nodes 2 and 4 and the 
other between nodes 5 and 2. 

�9 B r a n c h  current :  the current flowing in a branch is called a branch current. 
Currents/1,  12 and 13 in the diagrams are branch currents. 

�9 M e s h :  a path through two or more branches which forms a closed path is 
called a mesh. There are two meshes in the diagram: one passes through 
resistors R1, R4 and the battery V (nodes 1, 2, 5, 6, 1); the other passes 
through resistors R2, R3, and R 4 (nodes 2, 3, 4, 5, 2). A mesh is also called a 
loop but it cannot have any other loops inside it. The loop containing 
resistors R1, R2, R3 and the battery V (nodes 1, 2, 3, 4, 5, 6, 1) is therefore 
not a mesh. In other words, a mesh is a loop but a loop is not necessarily a 

mesh. 

�9 M e s h  current:  the currents Ia and Ib are called mesh currents. Note that the 
branch current/1 is the same as the mesh current Ia but that the branch 
current 13 is the mesh current Ia minus the mesh current lb. 
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3.3 KIRCHHOFF'S CURRENT LAW 

Kirchhoff's current law may be stated as follows. The sum of the currents 
entering a node is equal to the sum of the currents leaving that node. This 
means that the algebraic sum of the currents meeting at a node is equal to zero. 
Applying the law to the node shown in Fig. 3.3, we see that 

I2j  
I1 

Figure 3.3 

I~+I2+I3=I4+15 

Rearranging, 

11 + 12 + 13 -- 14 -- Is - 0 (3.1) 

Figure 3.4 

For the node shown in Fig. 3.4 

I1+Iz+I3+I4--0 

I2 
_ . . . r  

(3.2) 

3.4 KIRCHHOFF'S VOLTAGE LAW 

Kirchhoff's voltage law may be stated as follows. The sum of the voltage 
sources around any closed path is equal to the sum of the potential drops 
around that path. This means that the algebraic sum of all the potential 
differences around any closed path is equal to zero. The important points to 
remember are (1) the path must be closed and (2) it is an algebraic sum. Always 
decide upon a positive direction (say clockwise) for a trip around the path: 
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I 3 R  3 - V + I 1 R  1 

potential differences in that direction are then positive and those in the 
opposite direction are negative. 

Applying the law to the circuit of Fig. 3.5 we see that for the closed path 
containing the nodes 6, 1, 2, 5 and 6, taking the clockwise direction to be 
positive, 

= 0  

Figure 3.5 

13 2 12 
1 3 

R3[~ _ R2 

1- 6 4 
5 

rearranging we obtain 

V = IIR1 + I3R3 (3.3) 

For the closed path containing the nodes 5, 2, 3, 4 and 5, taking the clockwise 
direction to be positive, 

-I1R1 + V -  I2R2 - 0 

rearranging we get 

V = I 1 R  1 + 12R2 (3.4) 

Finally, for the closed path containing nodes 6, 1, 2, 3, 4, 5 and 6, taking the 
clockwise direction to be positive, 

I 3 R  3 - I z R  2 = 0 

from which 

I2R2 = I3R3 (3.5) 

Note that Equation (3.5) is not independent because it could have been 
obtained from Equations (3.3) and (3.4) simply by equating their right-hand 
sides. 

Figure 3.6 

A r i 
I2 

V1 =6V R 2~ 

E 

3fi B 6fi la 
[ J '  I l I ~ c 

)V2=4V 

D 
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E x a m p l e  3 .1  

Dete rmine  the current  flowing in the resistor R in the circuit of Fig. 3.6. 

Solution 

Let the currents I~, 12 and 13 flow in the three branches as shown. Applying KCL 
to the node B we see that 

I 1 = 12 --[-- %=::>13 -- I 1 -  12 

We therefore  effectively have two unknown currents and we need two 
independent  equations to solve for them. The first of these we obtain by 
applying KVL to the closed path F A B E F  which gives, taking the clockwise, 
direction around the path to be positive, 

V1-311-212=0 

Putt ing V~ - 6 and rearranging,  we get 

3I~ + 212 = 6 (3.6) 

The second equat ion is obtained by applying KVL to the closed path E B C D E  
to give 

212 - 613 - V2 = 0 

Putt ing V2 = 4, 13 = 11 - 12 and rearranging,  we have 

212 - 6(I1 - 12) = 4 

212 - 6/1 + 612 = 4 

- 611 + 812 = 4 (3.7) 

Since we wish to determine 12 it is convenient  to el iminate/1.  We can do this by 
multiplying Equat ion  (3.6) by 2 and adding it to Equat ion  (3.7). Thus 

6/1 + 412 = 12 (3.8) 

-6 /1  + 812 = 4 (3.7 bis) 

12/2 = 16 

12 = 1 .33A 

l I=,AI  
Figure 3.7 

A I2 .4~ ] 

I ~ ~ +  ~'4i 2 - 

D 

~B 

V=6V 
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Dete rmine  the currents 13 and 12 flowing in the circuit of Fig. 3.7. 

Solution 

Using K C L  at node A we see that I~ = 12 + / 3  so that 

5 = 12 + 13 and 13 = 5 - 12 (3.9) 

Applying KVL to the closed path B C D A B  and taking the clockwise direction 
to be positive, we have 

6 + 813 - 412 = 0 (3.10) 

Substi tuting for ~ from Equa t ion  (3.9) above we obtain 

6 + 8(5 - 12) - 412 = 0 

6 + 40 - 812 - 4/2 = 0 

1212 = 46 

12 = 3.83 A 

It follows that  13 = 5 - 3.83 = 1.17 A. 

3.5 THE PRINCIPLE OF SUPERPOSITION 
This principle applies to any linear system, and when used in the context  of 

electric circuit theory it may be stated as follows: in any linear ne twork 

containing more  than one source of emf or current,  the current  in any e lement  

of the ne twork  may be found by determining the current  in that  e lement  when 
each source acts alone and then adding the results algebraically. When  
removing,  in turn, all the sources except one, any voltage source must  be 
replaced by its internal resistance (or by a short  circuit if the source is ideal) and 

any current  source must  be replaced by an open circuit. 

Example 3.3 

Calculate the current  flowing in the 10 f~ load resistor (RL) in the circuit of 

Fig. 3.8. 

A 
(~V1 = 36V (~V2 =12V 10~ 

(load resistor) ~ R1 = 15~ ~]R2 = 10~ RL 
B 

Figure 3.8 
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Solution 

The circuit represents a battery V 1 in parallel with a second battery V2 supplying 
a load resistor RL = 10 1). The terminals A and B are called the load terminals. 
The resistors R~ and R 2 represent the internal resistances of the batteries V~ and 
V2, respectively. To apply the principle of superposition, we first remove the 
battery V1 to give the circuit of Fig. 3.9. 

D 
V2 u 

RL 

Figure 3.9 

Note that the resistor R 2 is in series with the parallel combination of R~ and 
RL so that the current 11 is given by 

11 = V z / [ R  2 + ( R I R L / R  1 + RL) ] = 12/[10 + 150/25)1 = 12/16 = 0.75 A 

Using the current division technique we see that the current through the load 
resistor RL is given by 

I L l - -  IRi/(R1 + RL)}I 1 = 15 X 0.75/(15 + 10) = 0.45 A flowing from A to B 

Next we reconnect the battery V 1 and remove the battery V2, replacing it by its 
internal resistance (10 1)). This results in the circuit of Fig. 3.10 in which the 

I2 X 
,A 

R2 RL 

B 

Figure 3.10 

resistor R 1 is in series with the parallel combination of R 2 and R L. The current I2 
is therefore given by 

I2 = V1/[R1 + (RERL/(R2 + RL)] = 36/[15 + 100/20)] = 36/20 = 1.8 A 

At node X this current will divide equally between the resistors R 2 and R L 

because they are of equal value. Thus 

/L2 -- 0.9 A flowing from A to B 

The current which would flow through the load resistor RL when both 
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batteries are in the circuit together is therefore, according to the principle of 
superposition, given by 

IL --  ILl "q- / L 2  - -  0.45 + 0.9 = 1.35 A flowing from A to B 

Note that if the battery V2 were connected in the opposite sense (i.e. with its 
negative plate connected to the load terminal A and its positive plate connected 
to B) then IL2 would flow from B to A and the load current IL would be 
0.45 - 0.9 - -0 .45 A flowing from A to B (i.e. +0.45 A flowing from B to A). 

Example 3.4 

Determine the current flowing in the 8 f l  resistor (R~) in the circuit of 
Fig. 3.11. 

R2 = 4~ 
t J 

I = 3A I  R1 = 8~ V = 6V / 

Figure 3.11 

Solution 

First we replace the current source I by an open circuit, giving the diagram of 
Fig. 3.12. 

4~ 
i J 

Ia 

8o ( )6v  

Figure 3.12 

From this circuit we see that the current Ia- V/(R1 + R2)= 6 / 1 2 -  0.5 A. 
Next we reconnect the current source and replace the battery V by a short 
circuit to give the circuit of Fig. 3.13 shown overleaf. 

By current division we obtain 

Ib = [4/(4 + 8)1I- 4 • 3/12 = 1 A 

When both sources are acting 
R a - Ia + lb -- 0.5 + 1 = 1.5 A 

together the current through 



Figure 3.13 

3A 4fi 

Example 3.5 

3.6 THEVENIN'S THEOREM 

Thevenin, a French engineer, developed work by Helmholtz and published this 
theorem in 1883. It may be stated as follows" any linear network containing an 
element connected to two terminals A and B may be represented by an 
equivalent circuit between those terminals consisting of an emf E0 in series with 
a resistor R0. 

The emf E0 is the potential difference between the terminals A and B with 
the element removed and R0 is the resistance between the terminals A and B 
with the element removed and with all sources replaced by their internal 
resistances. Ideal voltage sources are replaced by a short circuit and ideal 
current sources are replaced by an open circuit. 

In any particular problem, of course, we place the two terminals A and B at 
either end of the element or part of the circuit in which we wish to determine 
the current. 

10s 40~ 

Find the current through the 40 ~ resistor (RE) in the circuit of Fig. 3.14. 

A 

= 12V 
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Figure 3.14 

Solution 

�9 Step 1: place terminals A and B at either end of the resistor R E. 

�9 Step 2: represent the circuit by its Thevenin equivalent circuit as shown in 
Fig. 3.15. 



Ro 

Figure 3.15 

A 
IL 

Rt. 
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�9 Step 3: to calculate E0 remove the resistor R L in Fig. 3.14 to give the circuit 
of Fig. 3.16 and determine the potential difference between the 

terminals A and B (say VAB). 

I 10~ 40~ 
I I I 

9v 12v 

T 
Figure 3.16 

To calculate VAB we take a trip from A to B adding the potential drops as we 

go. We therefore need to calculate the current I. Applying KVL to the circuit 

and taking the clockwise direction to be positive, we have 

9 - 1 0 I -  40I + 12 = 0 

501 = 21 

and 

I = 21/50 = 0.42 A 

Now, going from A to B via the 9 V  battery we have that 
- 1 0  • 0.42 + 9 - 4.8 V. This means that the potential drop is positive so that 
terminal A is at a higher potential than terminal B and so the current will flow 
through RL from A to B. 

To check, we can go from A to B via the 12 V battery in which case we have 

that 40 • 0.42 - 12 = 16.8 - 12 = 4.8 V as before. 

�9 Step 4: to calculate R0, remove the resistor RL, replace the batteries by short 

circuits to give the circuit of Fig. 3.17 on the following page and 

determine the resistance between the terminals A and B. 

The 10 1) and the 40 1) resistors are in parallel so the equivalent 

resistance between A and B is given by 

R o -  (10 • 40)/(10 + 40) = 8 12 



[~ 10~ 
IA 

T B 

Figure 3.17 

40~ 

Example 3.6 

�9 Step 5: put these values for Eo and Ro in the Thevenin equivalent circuit of 
Fig. 3.15. Then 

IL = Eo//(Ro + RE)= 4.8/(8 + 4 0 ) =  0.1 A 

This is therefore the current which will flow through the resistor RL 
in the original circuit of Fig. 3.14. 

Thevenin's theorem is very useful when we wish to determine the current 
through or the voltage across an element which is variable. 

Figure 3.18 

The resistor r shown in the diagram of Fig. 3.18 is variable from 0 to 250 l'l. 
Determine the maximum and minimum values of the current IL. 

R3 = 20~ 
A 1 

V1 = 20V O V2 = 10V 
/ 

~ N1 = 5f~ ~R2 = lOf~ 

B 

Solution 

Ro 

The Thevenin equivalent circuit is shown in Fig. 3.19 and we put terminals A 

Figure 3.19 

A 
IL 
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and B at either end of the resistor, r. To calculate E0 we first remove the resistor 
r in the circuit of Fig. 3.18 to give the circuit of Fig. 3.20. 

To calculate the potential difference between A and B we need to determine 

(~20V 
I 20s 

I oA 

lOV 

~ lOfl 

oB 

Figure 3.20 

the current I. Applying KVL to the closed path and taking the clockwise 
direction to be positive 

2 0 -  5 1 -  1 0 1 -  10 = 0 

151 = 10 

I = 0.67 A 

The potential drop between A and B is then given by 

VAB --  I R  2 -Jr V 2 .~- 0.67 • 10 + 10 = 16.7 V 

Since this turns out to be positive, then the potential of terminal A is higher 
than that of terminal B and the current IL flOWS from A to B. 

In accordance with Thevenin's theorem, VAB = E0. 
To calculate R0 we remove the resistor r in Fig. 3.18 and replace the batteries 

20~ 
- 4  ] oA 

.•5• [~10~ 

oB 
Figure 3.21 

by short circuits to give the diagram of Fig. 3.21. R0 is the resistance between A 
and B and is given by 

RAB- R3 + R1R2//(R1 + R2) 
= 20 + 50/15 
= 23.33 11 

Now from the Thevenin equivalent circuit of Fig. 3.19, putting in the values for 

E0 and R0, 
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I~ = Eo/(Ro + r ) -  16.7/(23.33 + r) (3.11) 

Ie is a maximum when r has its minimum value (i.e. 0 11): 

&max - -  16.7/23.33 = 0.72 A 

IL is a minimum when r has its maximum value (i.e. 250 f~): 

ILmin = 16.7/(23.33 + 250) = 0.06 a 

Using Thevenin's theorem the current Ie is now easily obtained for any value 
of r simply by putting that value into Equation (3.11) above. Using Kirchhoff's 
laws or the principle of superposition, we would have to rework the whole 
problem for every value of r. 

3.7 NORTON'S THEOREM 

In 1926 Norton, an American engineer, introduced an equivalent circuit which 
is the dual of Thevenin's (duals are discussed in Chapter 10). The theorem may 
be stated as follows: any linear network containing an element connected to 
two terminals A and B may be represented by an equivalent circuit between the 
terminals of a current source Isc in parallel with a resistor R. The current Isc is 
that which would flow through a short circuit connected between the terminals 
A and B, and R is the equivalent resistance between them with the element 
removed, with any voltage source replaced by a short circuit and with any 
current source replaced by an open circuit. 

Example 3.7 

Calculate the maximum and minimum values of the potential difference across 
the resistor r in the circuit of Fig. 3.22 if r is variable between 10 1~ and 100 1~. 

Figure 3.22 

R3 = 10s 

Solution 

First we put terminals A and B around the resistor r and represent the circuit by 
its Norton equivalent as shown in Fig. 3.23, from which we see that 

I L -  [Rsc/(Rsc + r)]Isc (3.a2) 
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and that 

V~ = I~ r (3.13) 

Figure 3.23 

,so I 

ISC 

1 

Rsc 

A 

lvL 

To calculate Isc we short circuit the load resistor r as shown in Fig. 3.24 and 
determine the current through this short circuit. We can make use of the 

Figure 3.24 

Vl (~V2 
~R1 ~R2 

R3 
F ] ~,A 

principle of superposition to do this. Replace the battery 1/2 by a short circuit to 
give the circuit of Fig. 3.25. 

Figure 3.25 

R3 
I I 

R2 

A 

ILl 

- - B  

From Fig. 3.25 we note that the resistor R~ is in series with the parallel 
combination of the resistors R2 and R3 so that 

I ~ -  V~/[R~ + (R2R3/R2 + R3)I = 20/[5 + (100/20)1- 20/10 = 2 A 

By current division, since R2 - R3, IL~ - 1 A. 
Now reconnect the battery V~ and replace the battery V2 by a short circuit to 

give the circuit of Fig. 3.26 overleaf. From Fig. 3.26 shown overleaf we see that 
the resistor R2 is in series with the parallel combination of the resistors R~ and 
R 3 so  that 

12 = V2/[R2 + (R1R3/(R1 + R3) ] = 10/[10 + 50/151 = (10/13.33)A 
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Figure 3.26 

[~R1 
~ V2 

R3 
t i A 

By current division 

IL2 = [R~/(R~ + R3)]I2 = [(5/15) X (10/13.33)] = 0.25 A 

Now in Equat ion (3.12), 

Isc = ILx + IL2 = 1 + 0.25 = 1.25 A 

To determine Rsc (in Equat ion (3.12)) we remove r and replace the batteries by 
short circuits to give the circuit of Fig. 3.27 in which Rsc then equals RAB: 

R3 
-4 1 o A 

~R1 ~']R2 

-oB 
Figure 3.27 

RAB = Rsc = R3 + R1R2,/( R, + R2)=  10 + 50/15 = 13.33 f~ 

The current through the load resistor in Fig. 3.23 is given by 

I c -  [Rsc/(Rsc + r)]Isc = [13.33 X 1.25/(13.33 + r)] a 

According to Norton's  theorem this is the current which would flow through r 

in the circuit of Fig. 3.22. 
When r = 10 f~, IL = (13.33/23.33)1.25 = 0.71 A. The corresponding voltage 

across the load is given by VL = 0.71 • 10 = 7.1 V. 
When r = 100 ~,  Ic -- (13.33/113.33)1.25 -- 0.15 A. The corresponding load 

voltage is then given by VL = 0.15 • 100 = 15 V. 
Note that using this method we need to calculate Isc and Rsc only once and, 

as r varies, simply put its new value into the equation to calculate Ic and VL. 

3.8 THE MAXIMUM POWER TRANSFER THEOREM 

Fig. 3.28 shows the Thevenin equivalent circuit of a network. The power in the 
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Ro 
A 
IL 

RE 

Figure 3.28 

load resistor R L is given by PL -- /L2RL �9 But I L -- Eo/(Ro + RL) SO that 

PL = Eo2RL/(Ro + RL) 2 (3.1.4) 

As RE varies, with E0 and R0 being constant, this will be a maximum (or a 
minimum) when dPc/dRc = 0. Using the technique for differentiating a 
quotient we get 

dPL/dRL = {(Ro + RL)2Eo 2 -  Eo2RL[2(Ro + RL)]J/(Ro + RL) 4 

This will be zero when the numerator is zero, i.e. when 

(R0 + RL)ZEo 2 :  2Eo2RL(Ro + RE) 

Ro + RL = 2RL 

R0 = RL (3.15) 

This can be confirmed as a maximum, rather than a minimum, by showing that 
d2pL/dRL 2 is negative. 

The power delivered to the load is therefore a maximum when the resistance 
of the load is equal to the internal resistance of the source or network, and this 
is called the maximum power transferred theorem. The actual value of the 
maximum power transferred is obtained by putting RE = R0 into the equation 
for Pc. This gives 

emax-- Eo2RL//(RL + RE) 2= Eo2RL//(2RL) 2 

emax-- Eo2/4RL �9 (3.16) 

Example 3.8 

For the circuit of Fig. 3.18 (Example 3.6) determine: 

(1) the value of the load resistor, r, which would give the maximum power 
transfer; and 

(2) the maximum power transferred to the load. 

Solution 

1 Using the Thevenin equivalent circuit of Fig. 3.19, the maximum power 
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transfer theorem tells us (Equation (3.15)) that the power to the load 
resistor r will be a maximum when r - R0. In Example 3.6, we found R0 to 
be 23.33 1). In this case then, for maximum power transfer, r = 23.33 f~. 

2 The maximum power transferred will then be given by Equation (3.16) with 

RL=r 
Eo2/4r- (16.7)2/(4 x 23.33) - 2.99 W 

3.9 DELTA-STAR TRANSFORMATION 

Three resistors connected as shown in Fig. 3.29 are said to be connected in delta 
(or mesh), while three resistors connected as shown in Fig. 3.30 are said to be 
star connected. It is often necessary or merely convenient to convert from a 
delta connection to an equivalent star. 

The star circuit will be equivalent to the delta connection if the resistance 
measured between any two terminals in the star is identical to the resistance 
measured between the same two terminals in the delta. For this to be the case, 
the total resistance between terminals 1 and 2 (say R12') in the delta circuit must 

1 

3 

1 

R1 

o / "~o 
3 2 

Figure 3.29 Figure 3.30 

equal the total resistance (R1 + R2) between the same two terminals in the star 
circuit. Similarly for the resistances between the other two pairs of terminals. 

We will deal with these in turn. 
R12' is the resistance R12 in parallel with the series combination of R23 and R31 , 

i.e. 

R12' -- R12[R23 -+- R31]/(R12-~- R23 -~- R31 ) 

For equivalence, then, 

R 1 -F R: = R~2[R23 + R31]/(R12 + R:3 + R31) (3.17) 

Similarly, equating the equivalent resistance between terminals 2 and 3 in 
Fig. 3.30 with that between terminals 2 and 3 in Fig. 3.29: 

R 2 + R 3 = R23[R3, + R12]/(R12 + R23 + R31 ) (3.18) 
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and for the resistance between terminals 3 and 1" 

R3 + R1 = R3,[R,2 + Rz3]/(R12-+- R23 + R3,) (3.19) 

Subtract Equation (3.18) from Equation (3.17) to give, after expanding the 
brackets, 

e 1 - e 3 -- (e12R23 -Jr- e12R31-  e23R12-  e23R31)/(e12 Jr- R23 -']- e31 ) 

e l -  R3 = (e12R31-  e23R31)/(e12 + R23 + e31) (3.20) 

Adding Equations (3.19) and (3.20), we obtain 

2R1 = (R3~R12 + R31R23 + R~zR3,-  Rz3R3~)/(R~2 + R23 + R3~) 
= 2R31R12/(R12 + R23 + R31 ) 

So 

R~ = R3~R12/(R~2 + R23 + R31) (3.21) 

If we now subtract Equation (3.19) from Equation (3.18) and add the result to 
Equation (3.17) we obtain 

R2 = R12R23/(R12 + R23 + R31 ), (3.22) 

Finally, by subtracting Equation (3.17) from Equation (3.19) and adding the 
result to Equation (3.18): 

R3 = Rz3R3~/(Ra2 + R23 + R3a) (3.23) 

An easy way to remember the rules for changing from delta to star is to draw 
the star set inside the delta set as shown in Fig. 3.31. 

Figure 3.31 

A 

R31 R12 

C 

Any star equivalent resistor is then given as 'the product of the two delta 
resistors on either side divided by the sum of all three delta resistors'. 

Example 3.9 

Determine the input resistance (i.e. the resistance between terminals A and B) 
in the circuit of Fig. 3.32. 
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Figure 3.32 

10~ 
l t t 

5D R31 

A i ~ l '  I :2 l 

1 OV 

R12 

7.5D 

15s 

R23 
1 

--~5~ (RE) 

Solution 

This is called a bridged-T circuit. Note that the resistors R12 , R23 and R31 are 

connected in delta. This is shown more clearly in Fig. 3.33 in which the star 
equivalent resistors are shown as Ra, Rb and Re. The node labelled S is called the 
star point. 

Using the delta-star transformation, we have that 

Ra = (product of the adjacent delta resistors/sum of the delta connected 
resistors) 

= 10 x 5/30 = 1.67 f~ 

Similarly 

Rb = 10 X 1 5 / 3 0 -  5 f~ 

 ov( 

1 10~ 3 

7.5fl 

IL 

5 f~ (RE) 

Figure 3.33 

And 

Rc = 5 x 15/30 = 2.5 f~ 

The circuit now simplifies to that of Fig. 3.35 via Fig. 3.34. 
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1 1.67s S 5~ 
. , ,  I - i ] ~]  I 

2.5~ 
10V 10~~-] 

7.5D. 

3 A 1.67~ 
I -- ! ! 

L5gZ 10V 

B 
Figure 3.34 Figure 3.35 

IL 

10~ 

The equivalent resistance between A and B is then given by 

RAB = R a + 10 • 10/(10 + 10) = 1.67 + 5 = 6.67 fZ 

The current IL in Fig. 3.32 is the same as that in Fig. 3.35 and is obtained by 
current division. Since the two parallel connected resistors are equal in value, 
the total current I will divide equally between them. Now 

I = V/RA, = (10/6.67)A - 1.5 A 

so that IL = 0.75 A. 

3.10 STAR-DELTA TRANSFORMATION 

We can use the same diagrams of Figs 3.29 and 3.30 and obtain the reverse 
transformation by considering Equations (3.21), (3.22) and (3.23) above. 
Multiplying Equation (3.21) by Equation (3.22), Equation (3.22) by Equation 
(3.23) and Equation (3.23) by Equation (3.21) in turn, we obtain 

R1R2 = RazZRz3R3]/[R12 + R23 -+- R31] 2 (3.24) 

R2R3 = R232R31R,2//IR12 + R23 + R31] 2 (3.25) 

R3R1 = R312R~2R23//[R12 + R23 + R3~] 2 (3.26) 

Adding Equations (3.24), (3.25) and (3.26) gives 

R~R2 + R2R3 + R3R1 = R12R23R31[R~2 + R23 + R3~]/[R~2 + R23 + R31] 2 
= R12R23R31/(R12 + R23 + R31) 

N o w  R23R3]/(R12 + R23 + R31) - R3 from Equation (3.23) so 

RIR2 + RzR3 + R3R1 = RlzR3 

Dividing both sides by R3 we see that 

R12 = R1 + R2 + R1Rz/R3 (3.27) 

Similarly, by noting that 

R31Rlz/(R12 + R23 + R31) = R1 
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and that 

R12R23//(RI2 + R23 + R31) - R2 

we obtain 

R23 = R2 + R3 + R2R3/R1 (3.28) 

and 

R31 = R3 + R1 + R3R1/R2 (3.29) 

Example 3.10 

Transform the star connected resistances R~, R2 and R 3 shown in the bridged-T 
network of Fig. 3.36 to a delta. Hence determine the current flowing through 
the 40 11 resistor (R). 

C 

R 
i I 40~ R1 R3 

l I [" ' o i 10~ 10~ 

80V R2~-~5~ 

Figure 3.36 

Solution 

The diagram is redrawn in Fig. 3.37 to show the equivalent delta resistors R12, 

80V 

R 
I I 

R31 1 
! I 

N23 

[ 
Figure 3.37 

R23 and R31. Using the star-delta transform Equations (3.27), (3.28) and (3.29), 
we have 

R12 = R~ + R 2 + R 1 R 2 / R  3 - 10 + 5 + 50/10 - 20 11 
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R23 = R2 + R3 + RzR3/R~ - 5 + 10 + 50/10 = 20 1~ 

R31 = R 3 + R 1 + R3R1/R 2 = 10 + l0 + 100/5 - 40 D, 

This leads to the circuit of Fig. 3.38 and then to Fig. 3.39 by replacing the two 
parallel connected 40 ~ resistors by their 20 11 equivalent resistor. 

40~ 
! I 

1 L )+ov  

40f~ I 20f~ 
l I o A ~ I 

20~ ~--~20~ l'~20f~ 

0 0 

O 80v 

+l 
Figure 3.38 Figure 3.39 

11 

l J 20o 

The equivalent resistance between the terminals A and B in Fig. 3.39 is given 
by 

RAB = (20 X 40)/60 = (80//6) 11. It follows that 

I = V/RAB = 80 • 6/80 = 6A. 

By current division 

I 1 = ( 2 0 / 6 0 ) I  " - - ( 2 0 / 6 0 )  • 6 = 2 A 

The current through each 40 f~ resistor in Fig. 3.38 is therefore 1A and since the 
top one of these is the resistor R in Fig. 3.36, the required answer is 1A. 

3.11 S E L F - A S S E S S M E N T  TEST  

1 State Kirchhoff's first (current) law (KCL). 

2 Define a node. 

3 Define a mesh and state the difference between a mesh and a loop. 

4 State Kirchhoff's second (voltage) law (KVL). 

5 Explain the usefulness of the principle of superposition in electrical circuit 

analysis. 

6 State Thevenin 's  theorem. 

7 State Norton 's  theorem. 

8 What  is the condition for the maximum power transfer from a source to a 

load? 
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9 Three resistors each of 12 ~ resistance are connected in delta. Determine 
the resistance of each of the equivalent star connected resistors. 

10 Three resistors each of 10 lq resistance are connected in star. Calculate the 
resistance of each of the equivalent delta connected resistors. 

11 A voltage source has an internal resistance of 100 lq and an open circuit 
terminal voltage of Vs. Determine the resistance of the load resistor if: 
(a) the power transferred to the load is to be a maximum; 
(b) the required load voltage is 0.9 Vs. 

12 A voltage source Vs having a resistance Rs supplies a load RL via a 
transmission line of resistance RT. If the power transferred to the load is to 
be maximized specify: 

(a) RL if Rs = 100 12 and RT = 10 f~ 
(b) Rx if RL = 10 1~ and Rs = 5 
(c) Rs if RL = 40 f~ and RT = 10 II 

3.12 PROBLEMS 

1 Use (a) Kirchhoff's laws and (b) Thevenin's theorem to determine the 
current through the 10 f~ resistor in the circuit of Fig. 3.40. 

5f~ 15f2 
1 I I I 

C 

Figure 3.40 

)100V [~ 20f~ l-~ 10~ 

3~ 17f~ 
l I ! I 

2 Calculate the current in the 1 lq resistor in the circuit of Fig. 3.41 using (a) 
the principle of superposition and (b) Thevenin's theorem. 

2f~ 3~ 
- - - - - I  F ! I 

C  ,ov I ,o C 5v 

Figure 3.41 

3 Determine the Thevenin equivalent circuit between the terminals A and B 

in the circuit of Fig. 3.42. 
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Figure 3.42 
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T B 
12.[-] 18V 

4 In the circuit of Fig. 3.43 the resistor R is variable from 0 to 40 11. 
Determine the limits of the current through it. 

Q ~ 

12V 

5 The resistor R in the circuit of Fig. 3.44 is variable from 2 1~ to 200 fl. 
Determine (a) the maximum current through it, (b) the minimum current 
through it and (c) the value of its resistance when the current through it is 
100 mA. 

Figure 3.44 

Figure 3.43 

4V 

_I 
L 

20~ 
I I 

5~ 5~ 

I 

6 Use Norton's theorem to calculate the current in each of the branches of 
the circuit of Fig. 3.45 shown overleaf. 
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Figure 3.45 
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7 Three 20 1~ resistors are connected in star and a voltage of 480 V is applied 
across two of them. If three other resistors (identical to each other) are 
connected in delta and the same supply is connected across one of them, 
determine (a) the value of the delta connected resistors and (b) the current 
in each of the delta connected resistors. The supply current is the same as 
before. 

8 Three resistors having resistances of 100 1~, 200 1~ and 1 ~ are connected 
in delta. Determine the resistances of the equivalent star connected 
resistors. 

9 In the circuit of Fig. 3.42, a load resistor (RE) is connected between 
terminals A and B. Determine (a) the value of RE in order that the power 
transferred to it from the source shall be a maximum and (b) the 
maximum power transferred. 

10 A network has a Thevenin equivalent circuit consisting of a source Eoc in 
series with a resistance Roc so far as its output terminals A and B are 
concerned. When a load resistor of resistance 25 ~ is connected across the 
output terminals, the load current is 48.3 mA and when the load resistance 
is doubled the load current falls to 25.9 mA. 
(a) Determine the values of Eoc and Roo (b) Calculate the output 
voltage when a load of 40 1~ resistance is connected between A and B. 

11 A circuit has three nodes A, B and C. Between A and C is connected a 
voltage source of 20 V (having an internal resistance of 5 1~) in parallel 

with a resistor of 15 1~ resistance. Between B and C is connected a voltage 
source of 10 V (having an internal resistance of 2 ~)  in parallel with a 
resistor of 8 ~ resistance. The negative terminals of both sources are 
connected to the node C. Between A and B is connected a resistor, R of 
10 ~ resistance. Determine (a) the current through the resistor R, (b) the 
necessary resistance required in series or in parallel with R for the power 
to be transferred to terminals AB to be a maximum and (c) the value of 
the maximum power transferred. 

12 A bridge circuit has nodes A, B, C and D. The circuit is arranged as 
follows: 

between A and B: a resistance of 10 1~ 
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between B and C: a resistance of 80 lI 
between C and D: a resistance of 750 
between D and A: a resistance of 100 lI 
between B and D: a resistance of 200 lI 
between A and C: a voltage source of 20 V having an internal resistance of 
4 lI. The positive terminal of the voltage source is connected to the node 

A. 
Calculate the current through the 750 1~ resistor. 
[Hint: convert the delta connection ABD into the equivalent star.] 



4 Single-phase a.c. circuits 

4.1 ALTERNATING QUANTITIES 

A quantity which is continually changing its sign from positive to negative and 
back again is called an alternating quantity, usually referred to simply as an a.c. 
quantity. Examples of alternating quantities are shown in Fig. 4.1(a) and (b). 
The quantities shown in Fig. 4.1(c) and (d) are not alternating but are varying 
direct quantities. 

A graph of the quantity to a base of time is called the waveform of the 
quantity and when the waveform has completed one complete series of changes 
and is about to begin to repeat itself it is said to have completed one cycle. The 
time for one complete cycle is termed the periodic time (T) or simply the 
period. The number of complete cycles completed in one second is called the 
frequency (f) and is measured in cycles per second which is called the hertz 
(Hz) in honour of Heinrich Hertz (1857-94), a German Scientist. 
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It follows that 

f -  1/T (4.1) 

Example 4.1 

Determine (1) the periodic time of an a.c. quantity of frequency 50 Hz, (2) the 

frequency of an a.c. waveform for which the period is 2.5 ms. 

Solution 

1 From Equat ion (4.1), f =  lIT so that T = l/f= 1/50 = 20 ms. 

2 Again from Equat ion (4.1), f =  lIT = 1/(2.5 • 10, 3) = 400 Hz. 

There is an enormous range of frequencies and they are banded as shown in 

Table 4.1. 

Table 4.1 

Frequency range Description 
- 20 Hz Low 

20 Hz - 15 kHz Audio 
15 kHz - 30 kHz Very low radio 
30 kHz - 300 kHz Low radio 

300 kHz - 3 MHz Medium radio 
3 MHz-  30 MHz High radio 

30 M H z -  300 MHz Very high (VHF) 
300 M H z -  3 GHz Ultra high (UHF) 

3 GHz - 30 GHz Super high 

Instantaneous values 

In general an alternating quantity changes its magnitude from instant to instant 
over the cycle time and these values are called the instantaneous values of the 
quantity. They are represented by lower case letters, for example i (for 

current), v (for voltage). 

Peak values 

The highest value reached by a quantity in the cycle is called the maximum (or 

peak or crest) value. This value is usually denoted by a capital letter with a 

circumflex accent or with a subscript max or m so that a peak voltage might be 

written 9 or Vmax or Vm. 

Sinusoidal a.c. quantities 

The beauty of a.c. is that the voltage and current levels can be easily changed by 
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means of a machine called a transformer which, having no moving parts, is 
extremely efficient. Now the emf induced in transformer windings is propor- 
tional to d~/dt, the rate of change of magnetic flux linking them (i.e. 
differentiation is involved). The only a.c. waveform which when differentiated 
(or integrated) gives the same waveshape is the sine wave. Others become 
progressively more distorted with each subsequent differentiation, leading to 
harmonics and reduced efficiency and performance. For this reason the 
sinusoidal waveform in the most commonly encountered waveform in electrical 
engineering. 

V,I 

V m _ E m  

I " ~  2~/(0 

/ ",, I /  
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t 

Figure 4.2 

Fig. 4.2 shows a sinusoidal voltage waveform of maximum value Vm. This may 
be represented mathematically by 

v = Vm sin wt (4.2) 

where w is the angular frequency measured in radians per second, related to the 
frequency f (Hz) by 

= 2wf (4.3) 

The time axis may be converted into an angle axis simply by multiplying by w. 

Phase difference 

The second sinusoidal waveform (shown dashed) in Fig. 4.2 shows a current of 
maximum value Ira. This waveform is described mathematically by 

i - Im sin (~0t -- ~h) (4.4) 

and is said to lag the voltage waveform by an angle + because its peak value 
occurs r seconds after that of the voltage wave. Alternatively we could say 
that the voltage waveform leads the current waveform by an angle 4~ (i.e. by 
4~/oJ seconds). There is said to be a phase difference between the two 
waveforms. 
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Four sinusoidally alternating quantities are represented by: 

a = 5 sin oot; b = 15 sin (~ot - 30~ c = 10 sin (~ot + 60~ d = 5 sin 2~ot 

If w = 314 rad/s: 

(1) comment on the relative magnitudes and frequencies of these quantities; 

(2) determine the frequency of quantity d; 

(3) state the period of quantity b; 

(4) state the phase relationship of 
(a) a with respect to b 
(b) a with respect to c 
(c) b with respect to c. 

Solution 

1 From Equation (4.2) we see that the coefficient of the sine function 
represents the magnitude of the quantity. Thus the magnitude of d is the 
same as that of a (5 units); b is three times as big as a (15 units); c is twice as 
big as a (10 units). From Equation (4.3) we see that f =  ~o/27r so the 
frequency of quantities a, b and c is the same at oJ/2rr, whereas that of 
quantity d is double at 2oJ/2rr. 

2 The frequency of d is (2 • 314)/(2 x 3.14) = 100 Hz. 

3 The period (T) of quantity b is the reciprocal of its frequency (i.e. 1~If), 
which is half that of quantity d at 50 Hz. Therefore T - 1/50 = 0.02 s. 

4 Taking quantity a as the reference, we see from the sine functions that (a) a 
leads b by 30~ (b) a lags c by 60~ (c) b lags c by 30 ~ + 60 ~ = 90 ~ 

Phasorial representation of sinusoidal quantities 

In Fig. 4.3 the line OP is considered to be rotating in an anticlockwise direction 
with a constant angular velocity of 6o radians per second. Starting from the 

93 

~P2 

O~ 02 x/2 

Figure 4.3 
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horizontal position OP the line will have reached position O P  1 after 0~/~o 
seconds. After 0z/O2 seconds it will have reached position OP2 and after ~r/2o2 it 
will be in position OP 3. Plotting the horizontal projections of the line as it 
moves in a circular path results in the sine wave shown. The line OP is called a 
phasor which is defined as a line whose length represents the magnitude of a 
sinusoidal quantity and whose position represents its phase with respect to 
some reference. 

Phasor diagrams 

Two sinusoidally alternating quantities v = V m sin wt (a voltage say) and 
i =Im sin (wt + oh), (a current) may be represented by two phasors as shown in 

Figure 4.4 

I 

V 

V 

(a) (b) 

Fig. 4.4(a). This is called a phasor diagram and it gives the following informa- 
tion: 

�9 the magnitude of the voltage (the length of the line OV); this can be its 
maximum value or any constant multiple of it; 

~ the magnitude of the current (the length of the line OI); again this could be 
its maximum value; 

�9 the phase difference between the two quantities (the angle ~b). 

The phasors by convention rotate in an anticlockwise direction so that in the 
example shown the current I leads the voltage V by ~b. Alternatively we could 
say that the voltage lags the current by ~b. Note that the diagram of Fig. 4.4(b) 
gives exactly the same information as Fig. 4.4(a). The difference between the 
two is simply that they have been 'stopped' at different instants of time. Only 
quantities having the same frequency can be represented on the same phasor 
diagram. 

The root mean square (rms) value of a sinusoidai quantity 

The rms value of any alternating quantity is found by taking the square root of 
the mean of the squares of the values of the quantity. It is often called the 
effective value, and the rms value of a current is that value which has the same 

heating effect as a steady direct current of the same value. It is represented by a 
capital letter. 
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For a sinusoidal current i = I m sin ~ot. Squaring gives i 2 - -  Im 2 sin 2 o~t and the 
27r, o) 

mean of this over a complete cycle is (1/27r) f Im 2 sin 2 ~ot d(~ot). The rms value 

is then the square root of this. 0 
Using the identity sin 2 0 - (1 - cos 20)//2, 

2rr/'oJ 2-rr o~ 
f Im 2 s i n  2 ~ot d(oJt) - Im 2 f ( l  - -  COS 2wt)/2 d ( w t )  
o o 

277"'o) 

- -  Im  2 / 2 [ o o t -  sin o~t]o - 7r lm 2 

The mean of this (obtained by dividing by 2 rr) is Im2/2. The rms value (obtained 
by taking the square root) is 

I = Im/X/2 (4.5) 

The average value of a sinusoidai quantity 

The average value of a sine wave over a complete cycle is zero, which is ra ther  
meaningless, so the average value is taken to be the average over a half cycle. 
This value is denoted by a capital letter with a subscript (e.g. Iav). For a current 
represented by i = Im sin o~t, 

2~,,/w 27r/'w 

/av = (1/Tr) f Im sin wtd (wt) - ( Im/rr)[-cos wt]0 
0 

= ( Im/77" ) [  ( - -  COS 77" - -  ( - -  COS 77" - -  ( - -  COS 0 ) ]  

�9 ". Iav= 2Im/Tr (4.6) 

The form factor of an a.c. waveform 

This is defined to be the rms value divided by the average value, so that for a 
sine wave the form factor is ( Im/V '2) / (2Im/rr )  - rr/(2V'2). 

Form factor of a sine wave = 1.11 (4.7) 

Example 4.3 

An alternating voltage has an average value of 4 V and a form factor of 1.25. 
Calculate (1) its rms value, (2) the peak value of a sinusoidal voltage having the 

same rms value. 

Solution 

1 The form factor = rms value/average value. Thus the rms value = the form 
factor x the average value" 

V = 1.25 • 4 = 5 V 

2 From Equat ion (4.5) we see that for a sinusoidal voltage the peak 

value - ~/2 • the rms value. Thus Vm = ~/2 X 5 -- 7.07 V. 
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Figure 4.5 
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Single-phase a.c. quantities 

Fig. 4.5 shows an elementary generator. It consists of a single coil having sides a 
and b rotating in a magnetic field produced by permanent magnets. As the coil 
sides are cutting magnetic flux, they will have emfs (voltages) induced in them. 
These emfs could be measured at terminals A and B and would be alternating 
in nature as the coils come under the influence of first a north pole and then a 
south pole alternately. Because there are only two terminals and only one emf 
can be generated in the coil, the a.c. generated is said to be single phase. The 
emf produced by this simple machine would be alternating but not sinusoidal. 
By careful machine design, however, generators can be made to generate 
sinusoidal emfs. 

4.2 SINGLE-PHASE A.C. CIRCUITS IN THE STEADY 
STATE 

Steady state operation means that any transient effects following the switching 
on of a circuit have died away and that the waveforms of voltages and currents 
are continuous sine waves. 

Purely resistive circuits 
Fig. 4.6 shows a single-phase voltage source V supplying a pure resistor R. The 
arrowheads indicate that if the voltage is going positive in the direction shown 
by its arrowhead then the current will be going positive in the direction shown 

vtC DR 
Figure 4.6 
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by its arrowhead. After the completion of the positive half cycle, of course, both 
arrowheads will reverse. 

Let the voltage be represented by v = Vm sin wt. The value of the current i 
flowing at any instant will be given by v/R=(Vm/R) sinoot, i.e. 
i= (Vm/R)sin ~ot. Now (Vm/R) is the maximum value (lm) reached by the 
current, so i = Im sin ~ot. Note that there is no phase difference between the 
voltage and the current expressions. The waveforms and the phasor diagram 
are as shown in Fig. 4.7(a) and (b). 

v,i~ v 

0 
t 

(a) Waveforms (b) Phasordiagram 
Figure 4.7 

The rms value (V) of the voltage is Vm/~/2 and that of the current (I) is 
Im/V'2. Now Im/X/2 = (Vm/V'2)/R, so that I = V/R (which of course is Ohm's 
law). For a purely resistive a.c. circuit then, 

V i i -  R (4.8) 

Example 4.4 

In the circuit of Fig. 4.6, R = 10 11 and v - 25 sin 314t. Determine (1) the rms 
value of the current, (2) the phase angle of the circuit, (3) the frequency of the 
supply. 

Solution 

1 The peak value of the voltage is 25 V so that the peak value of the current 
is 25/R = 2.5 A. The rms value of the current is therefore 2.5/~/2 - 1.77 A. 

2 For a purely resistive circuit the current and voltage phasors are in phase 
with each other so that the phase angle is zero. 

3 The angular frequency is ~o = 314 rad s -~. The frequency is 
f =  60/2Ir-  314/6.28 = 50 Hz 

Purely inductive circuits 

The diagram of Fig. 4.8 overleaf shows a pure inductor L connected to a single- 
phase voltage source V. Let the current be represented by i - Im sin o)t. Since 
this changing current produces a changing flux which will link the inductor then, 
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vt�9 
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L 

Figure 4.8 

according to Faraday's law, an emf will be induced in it, given by 
e = - L ( d i / d t ) .  Thus e - -Ld(Im sin o~t)/dt = -L(Imo9 cos o90, so 

e = - wLIm cos oJt (4.9) 

The maximum value of this waveform is oJLIm and as it is a minus cosine it is 
zr/2 (90 ~ behind the current wave. The direction of this emf is such as to 
oppose the current in accordance with Lenz's law, so the supply voltage V must 
be equal and opposite to E. 

Thus the supply voltage is represented by v - wLIm cos ~ot, which is zr/2 (90 ~ 
ahead of the current wave (cos 00t = sin (ox + zr/2). In a purely inductive circuit 
therefore the current lags the supply voltage by zr/2 (90~ The waveforms and 
the phasor diagram are shown in Fig. 4.9(a) and (b), respectively. 
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(a) Waveforms (b) Phasor diagram 

Figure 4.9 

The maximum value of the voltage wave is Vm = wLIm. Dividing Vm and Im by 
~/2 gives V -  wLI,  where V and I are now the rms values. Dividing both sides 
by I we have 

V I I  = ~oL (4.10) 

Now ~oL is written XL and is called the inductive reactance of the inductor. Its 
unit is the volt per ampere (the ohm) and because XL = o~L = 2zrfL it varies 
with frequency. The graphs of Fig. 4.10 show how the inductive reactance and 
the current vary with frequency in the circuit of Fig. 4.8. 

Note that as 

f ~ O  so X L ~ O  and I ~  
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and as 

f "---> ~ SO XL--- '~  and I--- ,0  

Example 4.5 

In the circuit of Fig. 4.8, L = 5 mH,  i = 10 sin 27rft and f = 400 Hz. Calculate 

(1) the inductive reactance of the circuit, (2) the rms value of the supply 

voltage. 

Solution 

1 The inductive reactance,  XL = 2-rrfL = 27r 400 5 • 10 -3 = 12.56 1"),. 

2 The  rms value of the voltage is given by V = IXL, where  I is the rms value 

of the current.  Now 

I = Im/V2 = 10/V/2 = 7.07 A 

SO 

V = 7.07 • 12.56 = 88.8 V 

Purely capacitive circuits 

The diagram of Fig. 4.11 shows a pure  capacitor  C connected  to a voltage 

V. We have seen (Chapte r  2) that  i = dq/dt  and that  q = CV so that  s o u r c e  

i = d(Cv)//dt = Cdv/dt  if C is constant.  Let  the source voltage be v = Vm sin wt. 
Then  

i -  C d v / d t -  Cd(Vm sin oJt)/dt = C[VmW COS ~ot] 

vt ~_c 

Figure 4.11 
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i . e .  

i = WCVm sin (oJt + 7r/2) 

Comparing the current and voltage expressions we see that the current leads 
the voltage by 7r/2 (90~ The waveforms and phasor diagrams are given in 
Fig. 4.12(a) and (b). 

Figure 4.12 
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(a) Waveforms (b) Phasor diagram 

Now Im = wCVm and dividing both sides by ~/2 gives I -  ~oCV (I and V are 
now rms values). Rearranging we get 

VII = 1/~C (4.11) 

Now 1/wC is written Xc and is called the capacitive reactance of the capacitor, 
for which the unit is the volt per ampere (the ohm). Since Xc = 1/wC = 1/2zrfC 
it is dependent upon frequency. Fig. 4.13 shows how the capacitive reactance 
and the current in the circuit of Fig. 4.11 vary with frequency. 

Figure 4.13 
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Example 4.6 

In the circuit of Fig. 4.11, C = 120 IxF and the rms values of V and I are, 
respectively, 100 V and 5 A. Calculate the frequency of the sinusoidal supply 
voltage. 
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Solution 

The capacitive reactance Xc = VII = 100/5 = 20 f~. From Xc = 1/2zrfC we see 
that the frequency f = 1/2zrCXc = 1/(27r 120 x 10 -6 x 20), s o . / =  66.3 Hz. 

Summary 

For the single-element a.c. circuits, which can also be considered as building 
blocks for the multiple-element circuits which follow, we have seen that" 

For the pure resistor, the current is in phase with the source voltage and 

V = IR (4.12) 

For the pure inductor, the current lags the source voltage by 90 ~ (zr/2 radians) 

and V = IXL (4.13) 

For the pure capacitor, the current leads the source voltage by 90 ~ (z r/2 

radians) and V = IXc (4.14) 

The inductive reactance XL = 2zrfL (4.15) 

The capacitive reactance Xc = 1/2zrfC (4.16) 

4.3 SERIES A.C. CIRCUITS 

Series RL circuits 

In practice resistive circuits will have some inductance however small because 
the circuit must contain at least  one loop of connecting wire. Also inductive 
circuits must have some resistance due to the resistance of the wire making up 
the coil. It is usual to show the resistance of a coil as a separate pure lumped 
resistor in series with a pure inductor as shown in Fig. 4.14. We can then make 
use of our building blocks assembled above. 

Figure 4.14 
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l 

Kirchhoff's laws can be applied to a.c. circuits in the same way as for d.c. 

circuits provided we use phasor sums rather than algebraic sums. Applying 
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KVL to the circuit of Fig. 4.14 and taking the clockwise direction as being 
positive, 

V -  V L -  VR = 0 (phasorially) 

so that 

V = VL + VR (phasorially) = IXL + IR (phasorially) 

Figure 4.15 

I t -  

VR 
I (reference) 

This phasor addition is shown in Fig. 4.15. The current is taken to be the 
reference phasor because it is common to both elements. From Equation (4.12), 
the voltage drop (IR) in the resistance R is in phase with the current (I). From 
Equation (4.13), the voltage drop (IXL) in the inductive reactance XL is 90 ~ 
ahead of the current. These two voltage drops are then summed to give the 
source voltage V. 

From the phasor diagram we see that, by Pythagoras' theorem, 
V 2 --- VR 2 -+- VL 2 SO that 

V2= (/R) 2 + (IXL) 2= I2(R2 + XL 2) 

Taking the square root of both sides we get 

V = I~/(R 2 + XL 2) = IZ (4.17) 

where Z = ~v/(R2 + XL 2) and is called the impedance of the circuit. Since 
Z = VII its unit is the volt per ampere (the ohm). 

The phasor diagram is now as shown in Fig. 4.16(a) and if we divide all three 
phasors by I we obtain the diagram of Fig. 4.16(b) which is called an impedance 
triangle. The angle ~b is the phase angle of the circuit, and from the geometry of 
the triangle we see that R / Z  = cos ~b, XL/Z = sin ~b and XL/R = tan ~b. 

~ I X L  
�9 r 

IR 
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Figure 4.16 
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E x a m p l e  4.7 

In the circuit of Fig. 4.14, R = 5 11, l = 50 mH and v = 100 sin 628t. Determine 
(1) the inductive reactance of the circuit, (2) the impedance of the circuit, (3) 
the current drawn from the supply, (4) the phase angle of the circuit. 
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Solution 

1 From Equation (4.15) the inductive reactance 
X L = toL = 628 • 50 x 1 0  -3 = 31.4 1) 

2 From Equation (4.17) the impedance 
Z = X/(R 2 + XL 2) = X/(52 + 31.42) = 31.79 1~ 

3 The current I = V/Z = 100/31.79= 3.15 A. 

4 The phase angle 6 = tan-1 (XL/R) = t a n - '  (31.4/5) - 80.95 ~ 

Series R C circuits 

vt( 

I R 

VR 

) 

C 
-41 

Vc 

Figure 4.17 

Applying KVL to the circuit of Fig. 4.17 and taking the clockwise direction to 
be positive we have 

V -  V c -  VR--0 (phasorially) 

so that 

V -  V R .n t.- V C - I R  + IXc (phasorially) 

With I as the reference phasor, the phasor diagram is shown in Fig. 4.18(a). In 

VR = IR I (reference) R 

Vc = IXc 
V = I Z  

Xc 

(a) (b) 
Figure 4.18 

this diagram VR (-IR) is in phase with the current (in accordance with 
Equation (4.12)), and Vc (=IXc) lags the current by 90 ~ (in accordance with 
Equation (4.14)). Now 

V 2 -  (/R) 2 + (IXc) 2= 12(R2 + Xc 2) 

so that 

v -  W ( , e  ~ + x ~  ~) = I Z  

where Z - ~ v / ( R  2 + Xc 2) and is called the impedance of the circuit. 
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As in the case of the RL circuit we can divide each of the phasors in 
Fig. 4.18(a) by I to obtain the impedance triangle for the circuit and this is 
shown in Fig. a.18(b). We see that cos ch=R//Z; sin ch=Xc//Z and 
tan ~b - Xc//R where ~b is the phase angle of the circuit. 

Example 4.8 

In the circuit of Fig. 4.17, R = 10 f~, C = 10 IxF and f =  400 Hz. Calculate (1) 
the impedance of the circuit, (2) the phase angle of the circuit. 

Solution 

1 The impedance Z = ~v/(R 2 + Xc2). 
Now R = 10 f~ and Xc = 1/2.afC- 1/(2zr 400 x 10 • 10  -6) = 39.8 fl, so 

Z = ~/(102 + 39.82) = 41 1) 

2 The phase angle of the circuit is 
4~- tan-1 (Xc/R) = tan -~ (39.8/10) = 75.9 ~ 

Series RLC circuits 

_ _ ~  R L 

vtO 

Figure 4.19 

<VR ~VL 

c 
II 

"~ Vc 

Applying KVL to the circuit of Fig. 4.19 and taking the clockwise direction to 
be positive, 

V -  V R -  V L -  V c - 0  (phasorially) 
V= VR + VL + V c -  IR + IXL + IXc (phasorially) 

The phasor diagram is drawn in Fig. 4.20(a) assuming that XL > Xc and in 
Fig. 4.20(b) assuming that XL < Xc. In both cases the voltage VR (=IR) is 
drawn in phase with the reference phasor (I), the voltage VL (=IXL) is drawn 
90 ~ ahead of the current I and the voltage Vc is drawn 90 ~ behind the current I 
in accordance with Equations (4.12), (4.13) and (4.14), respectively. 

In the first case (Fig. 4.20(a)) we see that the current lags the voltage V by the 
phase angle 4' and that therefore the circuit behaves as an inductive circuit. 
Also we have that 

v (m) + xo]  



Vc = IXc ~l VL = IXL 

~ ~ ]  I (reference) 

VR = IR 

(a) 

VL = IXL 

0 

Vc = IXc 

F i gu re  4 .20  

VR = IR 
r 

(c) 
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VL = I X L  

/ 
v. = IR/  

V 

I (reference) 
r 

Vc = IXc 

r 

I (reference) 

and 

V -  I~/ (R 2 + [X L - Xc] 2) 

The impedance is 

Z ( -V / I )  - V(R 2 "}- [X L - Xc] 2) 

The phase angle is obtained from cos 6 -  R/Z  or sin 6 -  ( X L -  Xc)/Z or 
tan 05 = ( X L -  Xc)/R. 

In the second case with Xc > XL we see that the current leads the voltage V 
by the phase angle 05 and that therefore the circuit behaves as a capacitive 
circuit. Also we have that V 2 = (IR) 2 + (I[Xc - XL]) 2 and so 

V = I%/(R 2 + [X c --XL] 2) (4.18) 

The impedance is Z=x / (R2+[Xc- -XL]  2) and the phase angle is 
~b = tan -1 ( X c -  XL)/R. 

There is a third possibility for this circuit: that the inductive reactance XL is 
equal to the capacitive reactance Xc. In this case the phasor diagram takes the 
form shown in Fig. 4.20(c), from which we see that V = IR, confirmed by 

putting Xt. = Xc in Equat ion (4.18). The circuit then behaves as a purely 
resistive circuit and is a special case which is fully discussed in Chapter  6. 

Example 4.9 

In the circuit of Fig. 4.19, R - 12 1), L - 150 mH, C - 10 I~F, v = 100 sin 2"rrft 
and f =  100 Hz. Calculate (1) the impedance of the circuit, (2) the current 
drawn from the supply, (3) the phase angle of the circuit. Give an expression 
from which the current at any instant could be determined. 
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Solution 

1 The impedance Z = ~ / / (R  2 + [ X  g - -  Xc]2). Now 

XL = 2rrfL = 2rr 100 X 150 • 1 0  -3 --  94.2 f/ 

and 

Xc = 1/2rrfC = 1//2rr 100 x 10 x 1 0  - 6 =  159 a 

S O  

Z -  X/(122 + [ 9 4 . 2 -  159] 2) - 6 5 . 9  

2 The current drawn from the supply is given by I = V/Z where I and V are 
rms values. The peak value of the supply voltage is 100 V so that the rms 
value is 100/~/2 = 70.7 V, so 

I -  V / Z -  7 0 . 7 / 6 5 . 9 -  1.07 a 

3 The phase angle of the circuit is 4) = cos -1 (R/Z) = cos -1 (12/65.9) = 79.5 ~ 
Because the capacitive reactance is greater than the inductive reactance, the 
circuit is predominantly capacitive and so the phase angle is a leading one 
(i.e. the current leads the voltage). 

The expression for the current is i = I m sin (27rft - 4)) with I m = V'2I and 
4) = 79.5 ~ = 79.57r/180 rad. Thus i - 1.5 sin (2007rt - 0.4470 A. 

4.4 COMPLEX NOTATION 

We have seen that a phasor quantity is one for which both magnitude and 
direction is important.  These quantities may be represented by phasor diagrams 
in the manner  shown earlier in the chapter. In Fig. 4.21(a), the phasor V1 is 

(a) Vi (b) I V~_cos (;th 
Vl sinr Vl sin(lh 

(reference) ~ I 
V~ cosr 

V2 
Figure 4.21 

(reference) 

shown to be leading the reference phasor by 4)1 degrees, whereas the phasor V2 
is shown as lagging the reference by ~J)2 degrees. It is conventional to take the 
horizontal axis as the reference direction. 

V~ may be represented by 

V 1 - ' -  IVllL-~)I 

In this notation IVll indicates the magnitude of the quantity and is represented 
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by the length of the phasor, while Z_~b~ indicates that it is ~b~ degrees ahead of 
(leading) the reference direction. Similarly, 

= 

the minus sign indicating that V 2 is (])2 degrees behind (lagging) the reference 
direction. 

Note that V1 has two components at right angles as shown in Fig. 4.21(b). 
These are V~r along the reference direction and Vlq at right angles to the 
reference direction. Now Vlr -- V 1 COS (~1 and Vlq -- V 1 sin ~ba so that 

V 1 -" Vl r  -+- Vlq  --  V 1 c o s  (])1 + V1 sin ~bl (a phasorial addition) 

To indicate that V1 sin ~bl is at right angles to V1 cos 4h an operator j is 
introduced which, when placed before a quantity simply indicates that that 
quantity has been shifted through 90 ~ in an anticlockwise direction with respect 
to any quantity which does not have a j in front of it. (Incidentally mathema- 
ticians use the letter i placed after the quantity.) 

Using this notation we have that 

V~ - V1 cos 4~1 + jV1 sin ~1 -- VI[COS IJ)l + j sin ~bl] 

and 

V2 = V2 cos ~b2 - j V2 sin ~b2 = V2[cos ~b2 - j sin ~b2] 

The minus sign in front of the j indicates that the quantity V2 sin ~b2 has been 
shifted through 90 ~ in a clockwise direction. 

The Argand diagram 

In Fig. 4.22(a), which is called an Argand diagram, the phasor V~ is shown in the 
positive reference direction. The phasor V2 has the same length as V1 but is 90 ~ 
ahead of it so, using the complex (or 'j') notation, we write 

V2 = jV, (4.19) 

Figure 4.22 

V2 jVl 

-- V l 0 V"--1 

V4 -j% 

(a) 

V2 
-,r.... 

_, (~2 

V3 

Vl 

r 

V4 

(b) 
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The phasor V3 has the same length as V2 but is 90 ~ ahead of it so that V3 = j V2. 
But from equation (4.19) V2 - jV1, so 

V3 - j( jV~) = jZv~ (4.20) 

Now V3 has the same length as V1 and is in the opposite direction to it, which 
means that V3 = -V~. It follows that 

.2 
j - - 1  and j =  V - 1  (4.21) 

Since it is impossible to take the square root of - 1 ,  it ( V - l )  is said to be 
imaginary and the vertical or j-axis is often referred to as the imaginary axis. It 
is also known as the quadrature axis. The horizontal or reference axis is also 
called the real axis. 

Now V 4 has the same length as V3 and is 90 ~ ahead of it so that V 4 = j V 3. 

�9 2 V From equation (4.20) 1/3 = J 1, so 

V 4 - - j ( j 2 V 1 )  : j ( -1 )V ,  - - j V  1 

and lies along the negative imaginary axis. Finally, applying the j operator to V4 
shifts it through 90 ~ in an anticlockwise direction bringing it to the positive real 
axis as Va. This is verified by noting that 

jV4 - j ( - j V 1 )  - -j2V1 - - ( - 1 ) V 1  - V1 

Note also that 

jV4 = j(jV3) -j j( jV2) -jjj(jV~) - j 4 v  1 = v 1 

It follows that 

.4 j = 1 (4.22) 

The Argand diagram consists of four quadrants. 

�9 In the first quadrant, the real and imaginary axes are both positive and, as 
shown in Fig. 4.22(b), the angle 4'1 takes values between 0 and 90 ~ from the 
real positive direction. 

�9 In the second quadrant, the real axis is negative and the imaginary axis is 
positive and phasors lying in this quadrant are between 90 ~ and 180 ~ from 
the reference direction. 

�9 In the third quadrant, both the real and the imaginary axes are negative and 
phasors are between 180 ~ and 270 ~ from the reference. 

�9 Finally, in the fourth quadrant the real axis is positive and the imaginary 
axis is negative, the angles from the reference direction being between 270 ~ 
and 360 ~ . 

Note that in all quadrants the angles ((~)1, (])2, (~3, and 4}4) are obtained from 
tan -I (imaginary component / real  component).  
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Represent the following currents on an Argand diagram: (1)/1 = (2 + j3) A 
(2) I 2 = ( - 5 + j 2 )  A (3) 1 3 = ( 4 - j 4 )  A ( 4 ) I 4 = ( - 4 - j 5 ) A  
(5) 15 = 5 /100  ~ A (6) 16 = 3 / - - 1 0  ~ A. 

Solution 

1 I1 has 2 units along the positive real axis and 3 units along the positive 
imaginary axis. Its length is u + 32) = 3.61 A. 

2 12 has 5 units along the negative real axis and 2 units along the positive 
imaginary axis. Its magnitude is V/(52 + 22) -- 5.39 A. 

3 13 has 4 units along the positive real axis and 4 units along the negative 
imaginary axis. Its magnitude is ~r + 42) -- 5.66 A. 

4 14 has 4 units along the negative real axis and 5 units along the negative 
imaginary axis. Its magnitude is V/(42 + 52) - 6.4 A. 

5 15 has a magnitude of 5 A and is at 100 ~ in an anticlockwise (positive) 
direction from the reference (i.e. the positive real axis). 

6 16 has a magnitude of 3 A and is placed 10 ~ in a clockwise (negative) 
direction from the positive real axis. 

These are shown on the Argand diagram in Fig. 4.23. 

I51~ I +j 

I-- 
I I I1 

I2 / t  3 /4 

~ +  

13 
14 5 

-j 
Figure 4.23 

Rectangular and polar coordinates 

The phasor diagram of Fig. 4.24 shows a phasor V and its two components in 

Figure 4.24 

jb = V sin 

/ "-- (reference) / r -  r 

a = V cos 
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the real and imaginary axes. Note that V -  IVIL_~:  V c o s ~ +  
j V sin ~b = a + jb say (with a = V cos ~b and b = V sin ~b). From the geometry  of 
the diagram we see that V = X/(a 2 + b 2) and that 4~ = tana (b/a). Thus 

V = IVI/__4, = V/(a 2 + b2)/_tan ~ (b/a) (4.23) 

This is called the polar coordinate  form of the phasor  V. Also 

V -  IVI cos ~b + jlVI sin ~b = a + jb (4.24) 

This is called the rectangular  coordinate  form of the phasor  V. It is a simple 
mat ter  to change from one form to the other. 

Example 4.11 

Express (1) I = (4 + j3) A in polar  form, (2) V = 2 5 / _ - 3 0  ~ V in rectangular  
form. 

Solution 

1 The magni tude of the current  is ~v/(4 2 + 32) = 5 A. 
The angle ~b = tan -1 (3/4) = 36.86 ~ 

Thus in polar form we have I - 5 / 3 6 . 8 6  ~ The current  is shown in both 
forms in Fig. 4.25(a). 

5A 

4A 
(a) 

Figure 4.25 

j3A 21.65V 

(reference) 

(b) 

12.5V 

(reference) 

2 The component  of V along the real axis is 25 cos 30 ~ = 21.65 V. 
The component  of V along the negative imaginary axis is 
25 sin 30 ~ - 12.5 V. 
Thus in rectangular  form we have V - (21.65 - j12.5) V. The voltage is 
shown in both forms in Fig. 4.25(b). 

Addition and subtraction of complex quantities 

lit is more  convenient  to do addition and subtraction using the rectangular  

coordinates form of the quantities. The real parts of the quantities are added 
(or subtracted) to give the real part  of the resultant quantity. Similarly the 
imaginary parts are added (or subtracted)  to give the imaginary part  of the 
resultant.  
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Dete rmine  the sum of the two voltages V 1 = (10 + j50) g and 

V2 = (15 - j 2 5 )  V. 

Solution 

Let the resultant  voltage be V. Then  

V = (10 + 15) + j(50 - 25) = (25 + j25) V 

The magni tude of V is given by ~V/(252 + 252)  -- 35.35 V. The phase of V with 

respect to the reference is given by 4 , -  tan -~ ( 2 5 / 2 5 ) -  45 ~ The complete  
phasor  diagram is shown in Fig. 4.26. 

Figure 4.26 

Example 4.13 

Two currents enter ing a node in a circuit are given by 11 = 20/_30~ A and 
12 = 3 0 / 4 5  ~ A. Calculate the magni tude  and phase of a third current  13 leaving 

the node. 

Solution 

Convert ing to rectangular  coordinates  we have 

I1 - 20 cos 30 ~ + j20 sin 30 ~ = (17.32 + j l0)  A 
I: = 30 cos 45 ~ + j30 sin 45 ~ - (21.2 + j21.2) A 

By Kirchhoff 's  current  law, 

I3 = I1 + I2 - (17.32 + 21.2) + j(10 + 21.2) = (38.52 + j31.2) A 

I3 = S/(38.522 + 31.22)/-tan -1 (31 .2 /38 .52)=  49.57/_39 ~ A 
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Example 4.14 

The voltages at two points A and B are given by VA = 1 0 0 / - 2 0 ~  and 

V B -  2 0 0 / _ -  25 ~ V. Calculate the potent ia l  difference ( V A -  VB) be tween  

them. 

Solution 

Subtrac t ion  is best  carried out  using rec tangular  coordinates ,  so conver t ing to 

this form we have 

v~ 

v~ 

v~ 

= 100 cos 20 ~ + j l00  sin 20 ~ - (93.9 + j34.2) V 

= 200 cos 25 ~ - j200 sin 25 ~ = (181 - j84.5) V 

- VB = (93.9 - 181) + j(34.2 + 84.5) - ( - 8 7 . 1  + j118.7) V 

= 147 .2 /126 .3~  

Example 4.15 

Subtract  11 = (10 + j5) A f rom I2 

Solution 

11 = (5 - - j 15 )  - (10 + j5) 

= 5 - j 1 5  - 10 - j 5  

= ( - 5  - j 2 0 )  A 

: (5 -j15) A. 

Multiplication and division of complex quantities 

These  opera t ions  are best  carr ied out  using polar  coordinates .  For  multi- 

plication the magni tudes  are mult ipl ied and the angles are added;  for division 

the magni tudes  are divided and the angles are subtracted.  

Example 4.16 

If A = (5 + j6) and B = (7 - j l0) ,  obta in  the produc t  AB.  

Solution 

First let us use rec tangular  coordinates .  

A • 2 1 5 2 1 5 2 1 5 2 1 5  

= 35 - j50 + j42 + 60 

= 95 - j 8  

In polar  form 

A • B = V'(952 + 8 : ) / _ - t a n  -1 ( 8 / 9 5 ) =  9 5 . 3 3 / _ - 4 . 8  ~ 



In polar  form 

A = V / ( 5  2 --I-- 6 2) / t a n  -~ (6/5) - 7.81/_50.2~ V 

and 

B = ~/(72 + 102)/_ - tan -~ (10//7) = 12.21/_-55~ A 

A x B - AB/--(ChA + ~B) -- 7.81 X 12.21/ (50 .2  -- 55) 

= 95.33/_-4 .8  ~ 

Example 4.17 
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Divide A : (5 + j6) by B - (7 - j l 0 ) .  

Solution 

Using rectangular  form we have A / B  = (5 + j6) / (7  - j l0).  To proceed from 
here we have to ' rat ionalize '  the denominator ,  i.e. remove the j. This is done by 
multiplying the numera to r  and the denomina tor  by the conjugate of the 
denominator .  The conjugate of a complex number  (a + jb) is (a - jb), obtained 
simply by changing the sign of the j term. When  multiplying a complex number  
by its conjugate the j disappears.  Thus 

(7 - j 1 0 ) ( 7  + j l0)  = (7 • 7) + (7 • j l0)  - j ( 1 0  • 7) - j : ( 1 0  • 10) 
= 49 + j70 - j 7 0  - ( - 1 ) ( 1 0 0 )  = 49 + 100 

= 149 

Hence  

A / B  = [(5 + j6)(7 + j10)]/[(7 - j 1 0 ) ( 7  + j l0)] 
= (35 + j50 + j42 + j260)/149 

= ( - 2 5  + j92)//149 
= ( -0 .168  + j0.617) 

Convert ing to polar  form we have A / B  = V'(0.1682 + 0.617:)Z_tan -1 
(0.617//0.168) = 0.64/__74.8 ~ Since the real part  is negative and the imaginary 
part  is positive then the phasor  falls in the second quadrant  so that  the angle is 
180 - 74.8 = 105.2 ~ from the real positive axis reference.  

F rom Example  4.16 we have that in polar  form these two quantit ies are 

A = 7.81/_50.2 ~ and B = 12.21/__-55 ~ 

Now A//B = Z//B/__(C~z - ~bB) = 7.81//12.21/-[50.2 - ( - 5 5 ) ]  = 0.64/__105.2 ~ 

Application to the analysis of series a.c. circuits 

The phasor  diagram for the series circuit of Fig. 4.14 is given in Fig. 4.15. Note  
that  the phasor  VR lies along the reference axis and that the phasor  VL is 90 ~ 
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ahead of the reference axis. The total circuit voltage V is the phasor sum of 
these two. In complex form we write" 

V =  VR +J VL 

the j in front of V L indicating that it is 90 ~ ahead of the reference (and VR). 

Thus 

V = IR + j lXL = I (R  + jXL) = I Z  

where Z is the impedance of the circuit: 

Z = R + jXL (4.25) 

Similarly, for the series RC circuit of Fig. 4.17 and its phasor diagram of 
Fig. 4.18(a) 

V = V R - j V c  

the - j  in front of Vc indicating that it is 90 ~ behind the reference. Thus 

V = I (R  - j X c )  = I Z  

where again Z is the impedance of the circuit: 

Z = R - j X c  (4.26) 

For the series RLC circuit of Fig. 4.19 and its associated phasor diagram 
(Fig. 4.20(a)) 

V "-- V R + j ( V L -  Vc) 

Thus 

V = I[R + j ( XL-  Xc)] = I Z  

Z = R + j ( XL-  Xc) (4.27) 

If XL > Xc the j term is positive indicating a predominantly inductive circuit. 
For XL < Xc the j term is negative, indicating a predominantly capacitive 
circuit. When XL = Xc there is no j term and the circuit is purely resistive. 

The impedance triangles of Fig. 4.16(b) and 4.18(b) take the forms given in 
Fig. 4.27(a) and (b), respectively. 

R 

jXc 

R 
(a) (b) 

Figure 4.27 
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A coil having a resistance of 2.5 1) and the inductance of 60 m H  is connected in 

series with a capacitor having a capacitance of 6.8 txF to a 230 V, 50 Hz supply. 
Determine  the current drawn from the supply 

Solution 

I 2.5fl 60mH 6.81~F 

230v 

Figure 4.28 

The circuit is shown in Fig. 4.28. Take the voltage as the reference so that 
V = 230/_0 ~ V. The impedance of the circuit is given by Z = R + j ( X L -  Xc). 
N o w  

X L - -  2-rrfL = 2rr50 x 60 • 10 - 3 =  18.85 

and 

Xc = 1/27rfC = 1/(27r50 • 6.8 • 10 -6) = 468 l) 

Thus XL -- Xc = -449.15 12 and Z = (2.5 - j 449.15) ft. In polar form 

Z = ~/(2.52 + 449.152)/_tan -1 (449.15/2 .5)= 449.2/_-89.42 ~ l )  

The current is 

I = V / Z  = 230/00/449 .2 /_-89 .42  ~  230/449.2/_[0 ~  (-89.42~ 

so I = 0.512/__89.42 ~ A. The current therefore leads the voltage as expected in a 
predominant ly  capacitive circuit. 

4.5 PARALLELA.C. CIRCUITS 
Parallel RL circuits 
The circuit on the following page of Fig. 4.29(a) shows a resistor R in parallel 
with an inductor L. The corresponding phasor diagram is given in Fig. 4.29(b). 
It is convenient to take the voltage V as the reference phasor since it is common 
to both elements. 

The current I R is in phase with the voltage and the current Ic is 90 ~ behind 
(lagging) the voltage. Kirchhoff's current law tells us that the total current I is 
the phasor sum of I R and I L. The magnitude of I is V(IR 2 + IL 2) and the phase 
angle ~ is given by tan -~ (IL/IR). Since I = V/Z,  IR = V/R and IL = V/XL 

V / Z  = V ' [ (V /R)  2 + (V/XL)  2] = VX/[(1/R) 2 + (1/XL) 2] 
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I 

I 
tO 

(a) 

IL 

I, 
[R 

I 

(b) 

v (reference) 

Figure 4.29 

Dividing through by V we see that 

1/Z = ~/[(1/R) 2 + (1/XL) 2] (4.28) 

We have seen (Chapter 2) that the reciprocal of resistance ( l /R)  is called 
conductance (G). The reciprocal of reactance ( l /X)  is called susceptance (B) 
and the reciprocal of impedance ( I /Z)  is called admittance (Y), so that 
Equation (4.28) may be rewritten as 

Y = ~r 2 + BL 2) (4.29) 

In complex form we have the following relationship: 

I =  IR -- jlL 

so that 

V/Z = V/R - j V / X L  

Dividing throughout by V gives 

1/Z = 1/R - j l / X L  

and 

Y = G - j B L  (4.30) 

If we divide each phasor in Fig. 4.29(b) by V we obtain the admittance triangle 
shown in Fig. 4.30. 

G 

BL 

Figure 4.30 

Note that the phase angle r is given by tan -~ (BL/G) = tan 
XL = wL, we have 

4, = tan -1 (R/toL) 

-' (R/XL) and since 

(4.31) 
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Determine the magnitude and phase of the current drawn from the supply in 
the circuit of Fig. 4.31. 

Figure 4.31 

Solution 

From Equat ion (4.30) the admittance of the circuit is given by Y = G -  jBL. 
Now G = 1/R = 1/5 = 0.2 S, and 

B L = 1 I X  L = 1/2.nfL : 1/(2vr 50 • 20 x 10 -3) = 0.16 S 

Therefore 

Y = (0.2 - j 0.16) S = 0.26/_-38.7 ~ S 

Let the voltage be the reference so that V = 20/_0 ~ V. Then the current 
I V / Z  and since Z = 1//Y 

I = VY  (4.32) 

Therefore 

I = 20 x 0.26/_[0 ~ + (-38.7~ = 5.2/_-38.7~ A 

The current therefore lags the voltage as expected in an inductive circuit. 

Parallel RC circuits 

The diagram of Fig. 4.32(a) shows a resistor R in parallel with a capacitor C. 
The corresponding phasor diagram is given in Fig. 4.32(b). In this case, with the 
voltage V as the reference phasor, we have IR in phase with V and Ic leading V 
by 90 ~ From KCL we have that I = IR + Ic phasorially, 

=C 

I 

In V (reference) 

(a) (b) 

Figure 4.32 
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The magnitude of I is thus u + Ic 2) and the phase angle 4~ is tan 
( I c / I R ) .  Since I -  V/Z, I R -- V/R and Ic = V/Xc we have 

V / Z  = V'[(V/R) 2 + (V//Xc) 2] = VV'[(1/R) 2 + (1/Xc) 2] - V~/(G 2 + Bc 2) = VY 

In complex form we have 

I (=  V/Z) = IR + jlc = V/R + j V/Xc 

so that 

1/Z = 1/R + j l / X c  

and 

Y = G + jBc 

FigUre 4.33 

(4.33) 

Y 
Bc 

G 

From the admittance triangle shown in Fig. 4.33 we see that the phase angle ~b is 
given by tan -1 (Bc/G) = tan -1 (R/Xc)  and since Xc = 1//toC, we have 

th = tan- '  (wCR) (4.34) 

Example 4.20 

A circuit consisting of a resistor of resistance 5 1"), in parallel with a capacitor of 
10 IxF capacitance is fed from a 24 V, 4 kHz supply. Calculate the current  in 
magni tude and phase. 

Solution 

24v1�9 
4kHz 

I 
El 5s _-- IOIJF 

Figure 4.34 

The circuit is shown in Fig. 4.34. From Equat ion (4.33) we have that the 

admit tance is Y = G + JBo Now 

G = 1/R = 1/5 = 0.2 S 
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and 

Bc = 1/Xc = 1/(1/2".'fC) = 2rrfC = 27r 4 x 10 3 x 10 x 10 -6 = 0.25 S 

so that 

Y = (0.2 + j 0.25) S = 0.32/_51.34 ~ S 

Let the voltage be the reference so that V = 24/_0~ Then the current 
I = V Y  = 24 x 0.32/__(0 + 51.34) = 7.68/_51.34 ~ A. This indicates that the cur- 
rent leads the voltage as is to be expected in a capacitive circuit. 

4.6 SERIES-PARALLELA.C. CIRCUITS 
The circuit of Fig. 4.35(a) consists of a capacitor C in parallel with an inductor L 
and a resistor R in series. The phasor diagram is shown in Fig. 4.35(b). 

To draw the phasor diagram we first choose V to be the reference since this is 
common to both branches. The current Ic through the capacitor will be 90 ~ 

Figure 4.35 

I 

R 

vtO 
V L L 

i 
IC I \~.~ 

~ V (reference) 
I - I  \ ~ .  ,.. 
~ ~ \  "~  . "- ME 

] ~ -"~$ Ic ! vR ~ : 

IL sin eL IL COS (1)L 
(a) (b) 

ahead of V. The current IL through the inductor and resistor will be 4~L behind V 
where 4u - tan -~ (toL/R). The current IL is now taken as a reference for the RL 
branch. 

We can draw the voltage drop VR(--ILR) in phase with the current IL which 
produces it and the voltage VL(=ILtoL) 90 ~ ahead of the current IL which 
produces it. The phasor sum of VR and VL must be V, the total circuit voltage, 
and the phasor sum of Ic and IL is I, the total circuit current. 

The phase angle of the circuit is 4~ and is shown to be lagging V. In practice of 
course whether the total current is leading or lagging will depend upon the 
relative magnitudes of Ic and the quadrature component of IL (i.e. IL sin 4u 

If Ic > IL sin 4h~ then I will lead V and the circuit is predominantly capaci- 
tive. 

If Ic < IL sin 4~L then I will lag V and the circuit is predominantly inductive. 
If 1c - IL sin 4~L then I is in phase with V and the circuit behaves as a pure 

resistor. 
From the geometry of the phasor diagram 
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12 --" (IL COS (])L) 2 q- (/L sin q~c -- Ic) 2 (4.35) 

and 

~b = tan -1 [(Ic sin qSC -- IC)/IL COS qSL (4.36) 

The case where  q5 turns out to be 0, i.e. when Ic sin qSC = IC is a special case 
which will be fully discussed in Chapter  6. 

In complex form, we have, from the phasor  diagram of Fig. 4.35(b), 

I = Ic COS qSC + j(Ic -- Ic sin ~bL) (4.37) 

If Ic > Ic sin qSC then the j te rm is positive indicating that  the total current  
leads the voltage and that  the circuit is therefore  predominant ly  capacitive. 

If Ic < Ic sin 4K then the j term is negative indicating that  the total current  
lags the voltage and that the circuit is therefore  predominant ly  inductive. 

Also we have that V = Vc = VR + VL phasorially. 

Example 4.21 

Dete rmine  (1) the total current  drawn from the supply in the circuit of Fig. 4.36, 
(2) the phase angle of the inductive branch and of the circuit as a whole. 

IOOV 0 

I 

[0 5~ ~_20fl l,~176 
Figure 4.36 

Solution 

1 The current  through the capacitor is Ic - V/Xc = 100/20 = 5 A. The 
current  through the inductive branch is IL = V/ZL where ZL -- R + jXL. The 
phase angle of the inductive branch is given by 
4~L- tan -~ (XL/R) = tan -1 (10/5) - 63.4 ~ 

ZL = V(R 2 + XL 2) --" V ( 5  2 Jr- 1 0  2) = 11.18 a 

Ic- V/ZL- 1 0 0 / 1 1 . 1 8 -  8.9 A 

From Equat ion  (4.35) 

12 -- ( Ic  COS 4L) 2 + (IL sin qSc -- Ic) 2 
= (8.9 COS 63.4) 2 + (8.9 sin 63.4 -- 5) 2 = 15.9 + 8.75 = 24.65 A 2 

Therefore  

I =  4.96 A 
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2 We have already calculated the phase angle of the inductive branch to be 
63.4 ~ and this is of course lagging. The phase angle of the circuit as a whole 
is given by Equat ion (4.36) to be 

4 ) -  tan-1 [(IL sin 4 ~ -  IC) / ( IL  COS 4~)] = tan -~ (2.96/3.99) = 36.5 ~ 

Because IL sin L > Ic then the circuit is predominantly inductive and so the 
phase angle is lagging. 

4.7 POWER IN SINGLE-PHASE A.C. CIRCUITS 

We saw in Chapter  3 that in d.c. circuits, power (P) is the product  of voltage (V) 
and current (I)" 

P -  V I  watts (4.38) 

In a.c. circuits, where the voltage and current are both changing from instant to 
instant, the instantaneous power (p) is the product of the instantaneous voltage 
(v) and the instantaneous current (i) i.e. p - vi. 

Purely resistive circuits 

For the purely resistive circuit shown in Fig. 4.6 the waveforms of voltage, 
current and power are given in Fig. 4.37. Note that the power waveform never 
goes negative (the product vi is always positive) and that its frequency is twice 
that of the voltage and current waveforms. 

v, i ,p P P 

0 r 

t 

Figure 4.37 

If v - Vm sin wt then i - I m sin ~ot and since p - vi, 

P - V m l m  s i n 2 ~ o t  (4.39) 

The average power is obtained by determining the mean value of the waveform 
shown, which is given by 

27r~ ~o 27r oJ 

P - (w/ZTr) f VmI m sin 2 tot dt - (w/ZTr)VmI m f sin 2 tot dt 
0 0 

Using the identity sin 2 0 - (1_ - cos 20)/2 we have 
2rr/w 

P = (~o//27r)Vmlm - f [(1 - cos 2o)0)2 ] at - ( V m [ m ~ ) / 4 7 r [ t  - (sin 2o)t/2m)]2';  ~~ 
0 
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Note that this indicates a frequency of twice that of the supply voltage, 
confirming the evidence of the waveforms of Fig. 4.37. 

Putting in the limits, this reduces to Vmlmw/47r[27r/oo] = Vmlm/2. Rewriting 
this as (Vm/V'2) ( Im/~/2)  we convert the maximum values to rms values and we 
have for the mean power 

P = V I  (4.38 bis) 

Since V = I R  we may also write 

p = I2R (4.40) 

and 

p = V2//R (4.41) 

Purely inductive circuits 

For the purely inductive circuit of Fig. 4.8 the voltage, current and power 
waveforms are given in Fig. 4.38. Note that the power waveform is sinusoidal 
and has equal positive and negative half cycles. The average is therefore zero. 

v,i,p 
P 

0 ~-- 
t 

Figure 4.38 

If the voltage is represented by v = Vm sin ~ot then the current will be given by 
i = --Im COS wt since it is 90 ~ lagging the voltage. The instantaneous power is 
then given by 

p = vi - - V m l  m sin wt cos ~ot 
27"r: to 

The average power is P = -(~o/27r) f (VmI m cos  ~ot sin o~t)dt. 
0 

(4.42) 

Using the identity sin 20 - 2 sin 0 cos 0 we get 
27/',,,'0) 

P - - ( t o / Z T r ) V m I  m f [(sin 2oJt)/Z]dt - -(og/4"n-)Vmlm[-COS 2~o/2~O]2o ~ = 0 
0 

Again the power frequency is twice the supply frequency. 
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0 

P 
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Figure 4.39 

Purely capacitive circuits 

For the circuit of Fig. 4.11 the voltage, current and power waveforms are given 
in Fig. 4.39. If the voltage is given by v - Vm sin wt then the current, being 90 ~ 
ahead of the voltage, will be given by i - Im COS cot and the instantaneous power 

is 

p = Vmlm sin ~ot cos wt (4.43) 

Since Equations (4.42) and (4.43) are identical mathematically then calculation 
of the mean power will yield the same result as for the purely inductive circuit. 
The mean power in a purely capacitive circuit is therefore zero. 

Resistive-reactive circuits 

For circuits which contain resistance together with inductive and /o r  capacitive 
reactance there will be a phase angle ~b which in general lies between 0 ~ and 90 ~ 
In these cases, if the voltage is represented by v = Vm sin ~ot then the current 
will be given by i - Im sin (wt + q~) where ~b can be positive or negative. The 
instantaneous power is then p = vi = V m sin o~t I m sin (~ot + ~b). 

The average power is 
2 ~  to 

P - (oJ/2 I7") f Vm sin o~t lm sin (~ot + 4~)dt 
0 

2 "rr/o~ 

- V m & ~ / 2  - ~r J" (sin ~ot[sin ~ot cos ~ + cos 6ot sin ~])dt 
0 

2Tr,, ~n 

- Vmlm~O/2Tr f (sin 2 ~ot cos q~ + sin ~ot cos ~ot sin 4~])dt 
0 

27r, oJ 2Tr io  

= Vmlm~/2"n- f ( s i n  2 oJt c o s  ~b)dt + Vmlm~O/2"rr f (sin cot cos ~ot sin q~)dt 
0 0 

From the analysis of the purely resistive circuit, we see that the first term of 
the right-hand side of this equation reduces to VI  cos q~. From the analysis of 
purely reactive circuits and Equation (4.42) we see that the second integral is 
zero. The average power is therefore given by P - VI cos 4~. 
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In general, then, in a single-phase sinusoidal a.c. circuit for which the rms 
value of the supply voltage is V, the rms value of the supply current is I and the 
phase angle of the circuit is th, the power is given by 

P = V/cos 4) (4.44) 

For a purely resistive circuit ~b = 0 and cos 4~ = 1 so that the power is VI, which 
agrees with the result obtained previously. For a purely reactive circuit ~b = 90 ~ 
and cos ~b = 0 so that the power is zero which agrees with the results obtained 
previously. 

Power components 

Fig. 4.40 shows the phasor diagram for a circuit having a lagging phase angle of 
~. The current I is shown to have two components at right angles. These are 
I cos 4~ in phase with V and /s in  4~ lagging V by 90 ~ If we multiply all three 

Vl~o~o (p) 
I cos r V -~ 

VI sin 4) VI 
! sin r I (Q) (S) 

Figure 4.40 Figure 4.41 

currents by V we obtain the phasor diagram of Fig. 4.41 and, in this diagram: VI  
is a phasor representing the so-called apparent power (symbol S) which is 
measured in volt-amperes (VA); VI  cos 05 is a phasor representing the real 
power (symbol P) which is measured in watts (W); and VI  sin 4~ is a phasor 
representing the reactive power (symbol Q) which is measured in volt-amperes 
reactive (Var). 

In complex form we have, for a lagging phase angle 

S = P - j Q  (4.45) 

For a leading phase angle 

S = P + jQ (4.46) 

The magnitude of S is obtained from 

S -  ~/(P: + Q2) (4.47) 

The phase angle is obtained from 

ch = t a n - ' ( Q / P )  (4.48) 

Also 

ch = s in -~ (Q/S )  (4.49) 
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and 

= cos - ' (P /S )  

Since V -  IZ  and cos & = R / Z  then 

n = VI cos 4)= ( IZ)I (R/Z)  = I2R watts 

since sin & = X / Z  then Q = VI sin & = ( IZ) I (X /Z)  and Also, 

Q - I2X volt-amperes reactive 

(4.50) 

(4.51) 

(4.52) 

Power factor 

The real power (P) in a circuit is obtained by multiplying the apparent  power 
(S) by a factor cos ~b which is called the power factor of the circuit. 

P = S cos ~ (4.53) 

Power factor = cos 4' = P/S (4.54) 

Example 4.22 

The circuit of Fig. 4.42 is fed from a 12 V, 50 Hz supply. Calculate (1) the 
current, (2) the reactive power, (3) the power factor. 

._~__! lOft 20mH 
I 

v 

Figure 4.42 

Solution 

1 The impedance is 

Z -  R + jXL -- 10 + jZ'nfL - 10 + jZ~r 50 • 20 • 10 - 3 -  (10 + j6 .28) l )  

Z -  V/(102 + 6.282) - 11.8a 

The current is I -  V / Z  - 12/11.81 - 1.02 A. 

2 From Equat ion (4.52) the reactive power is 
Q = IZXL = 1.022 • 6.28 = 6.53 Var 

3 The power factor is cos ~b - R / Z  - 10/11.81 - 0.846 lagging. 
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8f~ 
t ! 

lOOV 

10s 

7fl 9fl 
f 1 

5~ 
I ! 

2f~ 

II 

Figure 4.43 

Example 4.23 

For the series-parallel circuit of Fig. 4.43 determine: 

(1) the equivalent impedance of the circuit; 

(2) the total power consumed by the circuit; 

(3) the reactive power in the capacitive reactance; 

(4) the overall power factor of the circuit. 

Solution 

1 The impedance of the upper inductive branch is 

Z 1 --- ( 8  - + - j l 0 ) 1 ~  = V ( 8  2 -~- 102)/tan -~ (10/8)1~ 

SO 

Z1 - 12.81/-51.34 ~ 

The impedance of the lower inductive branch is 

Z 2 -  (7 + j9)f l  = %/(72 + 92)/_tan -1 (9/7)l-I 

SO 

Z 2 - -  11.4/_52.13 ~ fl 

Now 

Z 1 -3 t- Z 2 --  ( 8  -4- 7 )  + j(lO + 9 )  

= (15 + j19) f~ = k/(152 + 192)/_tan -' ( 1 9 / 1 5 )  a 

s o  

Z 1 -3 t- Z 2 = 24.2/_51.7 ~ 1)  

The equivalent impedance of the parallel inductive branches is 
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Z,Z2/(Z ,  + Z 2 ) =  [(12.81 • 11.4)/24.2]/_(51.34 + 52.13 - 51.7) 
= 6.03/_51.77 ~ lI 
= 6.03(cos 51.77 + j sin 51.77) = (3.73 + j4.73) tq 

The impedance of the capacitive branch is 

z~ - (5 - j 2 )  n 

The impedance of the complete circuit, 

Z e q -  23 -+- 2122/(21 -Jr 22) -- (5 q- 3.73) q - j ( - 2  -t- 4.73)11 

SO 

Zeq = (8.73 + j2.73) = x/(8.732 + 2 . 7 3 2 ) / _ t a n - l ( 2 . 7 3 / 8 . 7 3 )  = 9 . 1 5 / 1 7 . 3 6 ~  

2 The current drawn from the supply is 

V//Zeq-  (100,/9.15)/_0- 1 7 . 3 6 -  10.92/_-17.36~ A 

The total power consumed is 

P = VI cos ~b = 100 • 10.92 cos 17.36 = 1042 W 

3 The reactive power in the capacitive reactance is 

Q = I2Xc = 10.922 • 2 = 238 Var 

4 The equivalent reactance of the whole circuit is positive, indicating an 
effective inductive reactance so that the overall power factor is lagging and 
its value is given by cos ~b = cos 17.36 = 0.9544. 

4.8 SELF-ASSESSMENT TEST 

1 Define an alternating quantity. 

2 Give the unit of frequency. 

3 Write down the relationship between frequency ( f )  and periodic time (T). 

4 What  is the peak value of the alternating quantity represented by 

25 sin ox? 

5 What  is the frequency of the alternating quantity represented by 

50 cos 314 t? 

6 If v = V sin 2Eft and i = I cos 27rft state the phase difference between v 

and i. 

7 What  is the rms value of a sinusoidal voltage whose maximum value is 
141 V? 
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8 Determine the form factor of an alternating waveform whose rms value is 
50 and whose ~ average value is 45. 

9 Give the relationship between the voltage and current in a purely resistive 
a.c. circuit. 

10 Calculate the inductive reactance of a coil whose inductance is 60 mH 
when it is connected to a supply of frequency 400 Hz. 

11 A capacitor of capacitance 0.1 ~F is connected to a 50 Hz supply. 
Calculate its capacitive reactance. 

12 Give the unit of impedance. 

13 Determine the phase angle of a coil having a resistance equal to half its 
inductive reactance. 

14 Determine the impedance of a coil having a resistance and reactance both 
equal to 20 1). 

15 Calculate the impedance of a circuit consisting of a capacitor in series with 
the coil of Question 14 if the capacitive reactance of the capacitor is (a) 
10 ~ and (b) 20 1~. 

16 Describe an Argand diagram. 

17 Express j7 in its simplest form. 

18 In which quadrant does ( - 6  - j5) lie? 

19 Determine the magnitude and phase angle of the phasor represented by 
v = (10 - j15). 

20 Express 25/_30 ~ in rectangular coordinate form. 

21 Express 3 + j4 in polar coordinate form. 

22 An a.c. circuit consists of a resistor of 5 f~ resistance in series with an 
inductive reactance of 6 fl. Express the impedance of this circuit in j form. 

23 A resistance of 10 l-I is connected in parallel with a capacitive reactance of 
25 fl. Express the admittance of this circuit in j form. 

24 Give an expression using the j-notation which relates real power, reactive 
power and apparent power. 

25 An RLC series circuit has R = 5 12, XL = 6 ll  and Xc = 10 12. A current 
given by (5 + j0) A flows through the circuit. Determine: (a) the apparent 
power; (b) the real power; (c) the reactive power; (d) the power factor; (e) 
the applied voltage in j-form. 
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1 A circuit is supplied from 50 Hz mains whose voltage has a maximum 
value of 250 V and takes a current whose maximum value is 5 A. At a 
particular instant (t = 0) the voltage has a value of 200 V and the current is 
then 2 A. Obtain expressions for the instantaneous values of voltage and 
current as functions of time and determine their values at an instant 
t = 0.015 s. Determine also the phase difference between them. 

2 Three circuit elements are connected in series and the voltages across 
them are given by v~ - 50 sin ~ot; v2 = 40 sin (oJt + 60~ 
v3 = 60 sin (~ot - 30~ Determine the total voltage across the series 
combination and its phase angle with respect to Vl. 

3 A circuit consists of an inductance of 0.318 H and a resistance of 5 12 
connected in series. Calculate the resistance, reactance and impedance 
when it operates on a supply of frequency (a) 25 Hz, (b) 50 Hz. 

4 A coil of resistance 10 1~ and inductance 47.7 mH is connected to a 200 V, 
50 Hz supply. Calculate (a) the current drawn from the supply, (b) the 
power factor of the circuit. 

5 A capacitor of 50 I~F capacitance is connected in series with a resistance of 
50 f~ to a 200 V, 50 Hz supply. Calculate (a) the current drawn from the 
supply, (b) the voltage across the resistance, and (c) the voltage across the 
capacitance. 

6 A capacitor of 80 IxF capacitance takes a current of 1 A when supplied 
with 250 V (rms). Determine (a) the frequency of the supply, and (b) the 
resistance which must be connected in series with this capacitor in order to 
reduce the current to 0.5 A at this frequency. 

7 A resistance of 50 l-I is connected in series with a variable capacitor across 
a 200 V, 50 Hz supply. 

(a) When the capacitance is set to 50 IxF calculate (i) the current drawn 
from the supply, (ii) the voltage across the two elements and (iii) the 
power factor. 

(b) Find the value of the capacitance when the current is 2 A. 
(c) Determine the value of the capacitance required to give a power factor 

of 0.866 leading. 

8 A circuit consists of a 100 f~ resistance in parallel with a 25 I~F capacitor 
connected to a 200 V, 50 Hz supply. Calculate (a) the current flowing in 
each branch, (b) the total current drawn from the supply, (c) the 
impedance of the circuit, and (d) the phase angle of the circuit. 

9 A capacitor having a reactance of 5 11 is connected in series with a resistor 
of 10 f~. This circuit is then connected (a) in series and (b) in parallel with 
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a coil of impedance (5 + j7) 1~. Calculate for each case (i) the current 
drawn from the supply, (ii) the power supplied, and (iii) the power factor 
of the whole circuit. 

10 A coil of inductance 15.9 mH and resistance 9 f~ is connected in parallel 
with a coil of inductance 38.2 mH and resistance 6 ~ across a 200 V, 50 Hz 
supply. Determine (a) the conductance, susceptance and admittance of the 
circuit, (b) the current drawn from the supply and (c) the total power 
consumed in kW. 

11 Three coils are connected in parallel across a 200 V supply. Their 
impedances are (10 + j30) ~,  (20 + j0) ~ and (1 - j20) II. Determine (a) 
the current drawn from the supply and (b) the power factor of the circuit. 

12 Determine (a) the current drawn from the supply and (b) the total power 
consumed in the circuit of Fig. 4.44. 

(4+j6)~ 
i t 

50Hz 

(6+j3)~ 
! ! 

(5-j8)9. 
~ 1  ! 

Figure 4.44 



5 Three-phase a.c. circuits 

5.1 INTRODUCTION 
Three-phase has a number of advantages over single-phase: 

�9 A three-phase machine of a given physical size gives more output than a 
single-phase machine of the same size and most electrical power generation 
is carried out by means of three-phase synchronous generators. 

�9 There is a considerable amount of saving in conductor material to be gained 
by using three-phase rather than single-phase for the purposes of power 
transmission by overhead lines or underground cables. 

* The three-phase induction motor is the cheapest and most robust of 
machines and accounts for the vast majority of the world's industrial 
machines. 

5.2 GENERATION OF THREE-PHASE VOLTAGES 

We saw in Chapter 4 that a single-phase a.c. voltage is generated by rotating a 
single coil in a magnetic field. A three-phase a.c. system is generated by rotating 
three coils in a magnetic field, the coils being mutually displaced in space by 
2~r/3 radians (120 ~ as shown in Fig. 5.1(a). The waveforms of the three-phase 
system of voltages thus produced are shown in Fig. 5.1(b). The coils in which 
the voltages are generated constitute the armature, while the system producing 
the magnetic field is called the field system. In the large generators found in 
power stations the armature system is stationary and it is the field system which 
is made to rotate. 

Figure 5.1 

O) 
a 

b' c' 

a' 

(a) (b) 
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Coil A has two ends labelled a and a" coil B has two ends b and b'; coil C has 
ends c and c'. End b of coil B is displaced by 2~r/3 radians from end a of coil A, 
and end c of coil C is displaced by 27r/3 radians from end b of coil B (in a 
clockwise direction). This means that if the coils are rotated in an anticlockwise 
direction at an angular frequency of to radians per second then coil A passes the 
N-pole of the magnetic field 27r/3to seconds ahead of coil B which in turn passes 
the N-pole 27r/3to seconds ahead of coil C. The phasor diagram of the voltages 
is given in Fig. 5.2 and shows the symmetry of the system. 

Ea 

Ec Eb 
Figure 5.2 

5.3 PHASE SEQUENCE 

The order in which the coils pass a given point in an anticlockwise direction is 
called the positive phase sequence of the three-phase system, and in the case 
shown, in which coil A generates phase A, coil B generates phase B and coil C 
generates phase C, the phase sequence (the word positive is understood) is 
ABC. The negative phase sequence of this system is ACB. The phase sequence 
of any system can be reversed by reversing the connections to two of the coils 
(say B and C) as shown in Fig. 5.3(a) and (b). 

Reversing the connections to any one coil simply upsets the symmetrical 

nature of the system as illustrated in Fig. 5.4(a) and (b). 

o) 
a 

c' b' 

a' 

(a) 

S 

Eb Ec 

(b) 

Figure 5.3 
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b' c 
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a' 

(a) 
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EatsE c 
Eb 

(b) 

5.4 BALANCED THREE-PHASE SYSTEMS 

It is important that the system is not only symmetrical (i.e. the voltage phasors 
are mutually displaced by 120 ~ ) but also balanced (i.e. the voltages are equal in 
magnitude so that the phasors are of equal length). This can be achieved by 
ensuring that the coils are identical and that their mutual 120 ~ separation is 
maintained. If this is done then the three generated voltages may be repre- 
sented as follows: 

�9 EA = Emsin ~ot 

�9 EB = Em sin (~ot- 27r/3) 
A by 120~ 

�9 Ec = Em sin ( w t -  47r/3) 
A by 240 ~ 

where E m is the maximum value of the generated emf; 

since the emf generated in coil B lags that in coil 

since the emf generated in coil C lags that in coil 

We could also express Ec as  E m sin (~ot + 27r/3) because Ec is also 120 ~ ahead 
of EA. Phasorially this is represented as shown in Fig. 5.5 and the phasors can be 
drawn to represent E m or E (the rms values). 

jE sin 60 E!,~ 

i rk 
I . , I  \ 

f ,  \/,oo - cos o~ i / "  
-IE sin 60 ~ ~B 

EA =E + j0 

Figure 5.5 

Note also that with EA as the reference phasor, we can use the complex (j) 
notation to write 

�9 E A = E ( I + j 0 )  
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�9 EB = - E  cos 60 ~ - jE sin 60 ~ = E ( - 0 . 5  - j0.866) 

�9 Ec = - E  cos 60 ~ + jE sin 60 ~ = E ( - 0 . 5  + j0.866). 

A balanced system is one in which the load impedance on each phase is the 

same in quality and quantity so that if the load impedances are  ZA(=RA + jXA) , 

ZB(=RB +jXB) and Zc(=Rc+jXc) then RA = RB = Rc (=R say) and 
XA=XB=Xc ( = X  say). The phase angles &A (=tan-I(XA/RA)), 
4~(=tan  -1 (XB/RB)) and &c ( =tan-1 (Xc/Rc)) are also equal (to & say). 

Six-wire system 

If a load is connected to each of the phases separately, six wires would be 
needed as shown in Fig. 5.6. 

Figure 5.6 

a 

a' ~ ZA 

Four-wire system 

By connecting together the three return wires (a', b' and c') of the six-wire 
system they could be replaced by just one wire making a total of four wires. The 
common return wire is called the neutral wire and the junction of the three coils 
is called the neutral point. This connection, shown in Fig. 5.7, is called a four- 
wire star connection. 

Figure 5.7 

EA 

', b', c', n 

f 
1 

c 

ZA 

ZB 
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Three-wire star system 

If the system is balanced the current in each phase can be represented by three 
sine waveforms, each having the same maximum value and with a successive 
phase displacement of 120 ~ . At any instant therefore the sum of the currents is 
zero. Because the current in the return wire at any instant (iA + iB + iC) = 0 it 
carries no current and may be dispensed with entirely, giving the three-wire 
system shown in Fig. 5.8. 

The current flowing in the generator-phase winding or in the load-phase 
impedance is called the phase current (IpH). The current flowing in the wires 
connecting the generator to the load is called the line current (IL). Clearly in 
this connection, the phase current and the line current are one and the same 
SO 

Ip. = IL (5.1) 

The junction of the three-phase windings (or of the three-phase loads) is called 
the star point. The voltage between any line and the star point is called the 
phase voltage (EpH on the generator side; VpH on the load side). The voltage 
between any two lines is called the line voltage (EL on the generator side; VL on 
the load side). In order to obtain the relationship between the phase voltage 
and the line voltage we note from Fig. 5.8 that the line voltage is 
VAB = VAN -- VBN. This is shown phasorially in Fig. 5.9 where we have drawn 
--VBN equal and opposite to VBN and added it to VAN to give VAB. A line is 
drawn perpendicularly from the end of VAN to meet VAB at M, which, by the 
geometry of the diagram, is its mid-point. Note also that the angle O is 30 ~ 

A 

I A r-I 
EA B = EL VAB -- VL VAN = VpH l" UZA 

i 

I 
N 

Figure 5.8 

Figure 5.9 

VAB = V L 

" >~ VAN = VpH 

| 
-VBN ~ 

VCN VBN 



112 Three-phase a.c. circuits 

N o w  

VAB = 2 VAN COS 0 = 2 VAN COS 30 ~ = 2 VAN ~/3/2 : ~/3 VAN 

But VAB = VL and VAN = Vpn SO that 

V L -" W/3 VpH (5.2) 

Summarizing, we can say that in a balanced three-phase star connection: 

�9 the line current equals the phase current (IL = IPH); 

* the line voltage is ~ 3  times the phase voltage and leads it by 30 ~ 

(VL = V'3 V p H / - 3 0 ~  

�9 the phase current is equal to the phase voltage divided by the phase 

impedance (IpH -- VpH/ZPH); 
�9 the phase angle is given by ~b = tan -~ (XL/RL) where XL and RL are the load 

reactance and resistance, respectively; 

�9 the power factor is given by cos ~b. 

It is also worth noting here that in a star connection the star point is available 
which means that 'mixed' ( three-phase and single-phase) loads can be supplied 
from the same supply. This is particularly useful in power distribution net- 
works. 

Example 5.1 

Three 10 s resistors are connected in star to a three-phase supply whose line 
voltage is 440 V. Calculate (1) the voltage across each resistor, (2) the line 
current, (3) the current in each phase if one of the resistors becomes open 
circuited. 

Solution 

The connection is shown in Fig. 5.10. 

Figure 5.10 

VL = 440V 

A 

1 
VpH l ~ 10~'~ 
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1 The voltage across each resistor is the phase voltage, and from Equat ion 
(5.1) 

VpH = VL/X/3 : 440/X/3 : 254 V 

2 The phase current is 

IpH = VpH/ZPH = 254/10 = 25.4 a 

Since this is a star connection the line current is IL = IpH = 25.4 A. 

3 Let the resistor in the B phase become open circuited. The circuit now 
consists of the other two resistors connected in series across 440 V. The 

current in line B is IL = 0. The current in line A equals that in line C: 

I B  - -  I c -  440/(10 + 10) = 22 A 

Example 5.2 

Three identical coils having a resistance of 3 1) and an inductive reactance of 

4 D are connected in star to a three-phase supply whose line voltage is 240 V. 

Determine  (1) the voltage across each coil, (2) the current drawn from the 
supply, (3) the power factor. 

Solution 

Fig. 5.11 shows the circuit. 

Figure 5.11 

V L : 2 4 0 V  

4D vPHT 

1 VpH- VL/X/3- 2 4 0 / X / 3 -  139 V. 

2 le = IpH VpH/ZPH = 139/X/(32 + 42) -- 139/5 = 27.8 A. 

3 The power factor is cos 4, - R/Z - 3/5 = 0.6 lagging. 
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Delta system 

EpH = : 
c 

Figure 5.12 

A IA = IL X > - Ic 
:' l a ~  

ZA 

ZB 

If, instead of connecting together the corresponding ends of the three coils (say 
all the 'start '  ends a, b and c, or all the 'finish' ends a', b' and c') the finish end of 
one coil were connected to the start end of the next in order (a' to b; b' to c; c' to 
a) we obtain the so-called delta connection shown in Fig. 5.12. In this case it is 
clear that the line voltages are the same as the phase voltages because each 
phase is connected directly between two lines: 

= v ,  (5.3) 

Although the phase voltages act around the delta they sum to zero at any 
instant since 

eAB 4- eBC + eCA -- E sin tot + E sin ( t o t -  2rr/3) + E sin ( t o t -  4~r/3) = 0 

There is therefore no circulating current around the delta. 
The line currents are different from the phase currents and applying KCL to 

node X, for example, we see that the line current IA is the difference of the two 
phase currents lc and Ia. This is shown in the phasor diagram of Fig. 5.13. In this 
diagram we have added -I~ to Ic to get IA. NOW 

IA = 2IAB COS 0 = 21AB COS 30 ~ 

(the geometry being the same as that in Fig. 5.9), so 

IA : 2IABX/3/2- ~/3IAB 

But IA = IL and Ic = IPH SO that 

I L -  X/31pH (5.4) 

Figure 5.13 

[A = IL 

Ii \ ~>tIc=IpH 

', 1 o 
~ I  a 

Ib 
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Also there is a phase difference of 30 ~ between the line and phase currents. 

Example 5.3 

Three impedances, each of impedance Z = (5 - j12) 1) are connected in delta 
across a three-phase supply whose line voltage is 110 V. Determine (1) the 
voltage across each impedance, (2) the line current drawn from the supply, (3) 
the power factor. 

Solution 

Figure  5 .14  

I VL = ,( 

IL 
.r 5~//'~ IpH 

12f2 . . ._ 12f2 

~ ~ ~  5~ 

The arrangement is shown in Fig. 5.14. 

1 The voltage across each impedance is the phase voltage which, for a delta 
connection, is the same as the line voltage: VpH = VL = 110 V. 

2 The phase current is 

IpH-- VpH/ZPH-- 110/~v/( 52+ 122)-- 110/13 = 8.46 A 

3 The power factor is cos ch - R / Z  = 5/13 = 0.385 leading. 

5.5 POWER IN BALANCED THREE-PHASE CIRCUITS 

The total power (P) in any three-phase system whose phases are A, B and C is 
given by the sum of the powers in each of the three phases. If these are 
respectively PA, PB, and Pc then 

P = PA + PB + Pc (5.5) 

For a balanced system the power in each phase is the same, so that the total 
power is simply three times the power in one phase. 

We saw in Chapter 4 that the power in a single-phase circuit is given by 
P = VI cos 4~ where V and I are the rms voltage and current, respectively, and 
cos 4~ is the power factor. In a balanced three-phase circuit therefore the total 

power is given by: 

P = 3 VpHIpH COS ~) (5.6) 
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where VpH is the rms value of the phase voltage,/PH is the rms value of the phase 
current, and cb is the angle between VpH and Ipu. 

For the balanced star-connected system we have that VpH = VL/~/3 and that 

Ipu = IL SO that P = 3(VL/X/3)IL COS cb = X/3 VEIL COS Oh. 
For a balanced delta-connected system we have that Vpu = V L and that 

IpH = IL/~/3 SO that P = 3 VL(IL/~/3) COS Cb = ~/3 VEIL COS 4~" 
For any balanced three-phase system, therefore, whether it be star or delta 

connected, the total power is given by 

P = V'3 V~IL cos 05 watts (5.7) 

In this equation, VL and IL are the rms values of the line voltage and current, 
respectively, and cos 4~ is the power factor of the circuit. 

From Equat ion (4.53), Chapter  4, the real power (P) is the apparent  power 
(S) multiplied by the power factor. It follows that S - P /cos  4~, so the apparent  
power is then given by 

S = ~/3 VEIL volt-amperes (5.8) 

We also saw in Chapter  4 that the reactive power (Q) is the apparent  power 
(S) multiplied by the sine of the phase angle ~b so that 

Q = ~3 VEIL sin 05 volt-amperes reactive (5.9) 

Example 5.4 

A three-phase load takes a line current of 10 A at 0.8 power factor lagging from 
a supply whose line voltage is 415 V. Determine (1) the power taken by the 
load, (2) the weekly energy cost of operating the load for eight hours a day, six 
days a week. The energy charge is 7.5 p per unit. 

Solution 

1 From Equation (5.7) the power taken is given by P = ~/3VLIL cos ~b. In this 
case VL = 415 V, IL = 10 A and cos ~b (the power factor) is 0.8. Therefore 

P = "v/3 • 415 • 10 • 0.8 = 5750 W 

2 The energy consumed by the load is measured in joules, which is watt- 
seconds. This is a rather small unit, so that for most purposes supply 
authorities use the kilowatt-hour (kW-hr) as the unit of energy. Energy 

used per week is 

P • (6 • 8) = 5750 • 48 = 276011 W-hr = 276.011 kW-hr 

Cost of energy is 276.01.1 • 7.5 = s This is the cost of the electricity 
consumed. In operating any piece of equipment there are also costs of 
maintenance and depreciation. 
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Measurement of power in balanced three-phase circuits 

For a four-wire system it is only necessary to use just one wattmeter connected 
as shown in Fig. 5.15. A wattmeter is calibrated to read the product VI cos ~b 
where V is the voltage across its voltage coil, I is the current through its current 
coil and ~b is the angle between them. The wattmeter in Fig. 5.15 has the phase 
voltage across its voltage coil and the phase current (which is also the line 
current in this case) through its current coil. It will therefore read the power in 
one phase and so the total power is obtained by multiplying the reading by 

three. 

No 

Co 

Bo, 1 

A 
Ao 

Figure 5.15 

For a three-wire system, however, the so-called two-wattmeter method is 
used, the two wattmeters being connected as shown in Fig. 5.16. Since a 
wattmeter reads the product of the voltage across its voltage coil with the 
current through its current coil and the cosine of the angle between them, 
then 

�9 W~ will read VAC/A COS ~1 (~1 is the angle between VAC and IA) 

" W2 will read VBclB COS 4~2 (4~2 is the angle between VBc and IB). 

The phasor diagram is drawn in Fig. 5.17 assuming a lagging power factor of 

Ao_ ' I 
z 

Co- ......... ~ - ~  

W2 

Figure 5.16 
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cos ~b so that the phase currents are lagging the phase voltages by ~b. Wat tmeter  
W~ reads 

VAclA cos (30 ~ - ~b) (5.10) 

where VAC is a line voltage and IA is a line current. 
Wat tmeter  W2 reads 

VBClB cos (30 ~ + 6) (5.11) 

where VBc is a line voltage and IB is a line current. 

For a leading power factor of cos ~b the sign of ~b will change in Equations 
(5.10) and (5.11). The power represented by the reading on Wl is: 

P1 = V E I L  (COS 30 ~ COS 6 + sin 30 ~ sin 6) - VLIL[(~V/3/2) COS 6 + (1/2)sin 6] 

The power represented by the reading on W2 is: 

P1 = VEIL (COS 30 ~ COS ~b - sin 30 ~ sin ~b) = VLIL[(V3/2) COS ~b - (1/2)sin th] 

The power represented by the readings on WI and W2 is thus 

P, + P2 = V3 VEIL COS 6 (5.12) 

which is the total power in a balanced three-phase circuit. 
Therefore the sum of the readings on the two wattmeters gives the total 

power in the three-phase circuit. If the phase angle is greater than 60 ~ (leading 
or lagging) one of the wattmeters will read negative because cos (30 ~ + ~b) is 
then negative and the reading must be subtracted from the other to give the 

total power. 
Now P~ - P2 = VEIL sin ~b, which is 1/V'3 of the total reactive power, so if we 

multiply (P~ - P2 )  by V'3 we obtain the total reactive power in the three-phase 
circuit. Thus 

Var = N / 3 ( P l -  P2) = X/3 VLIL sin 6 (5.13) 

Figure 5.17 
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Since the phase angle ~b is given by tan -~ (reactive power / rea l  power) then 

4~ = tan- '  [V'3(P~-  P2)/(PI + P2)] (5.14) 

The power factor is then simply cos oh. 
Summarizing, using the two-wattmeter  method in any balanced star or delta 

connected three-phase circuit in which the readings are PI and P2, we can 
obtain the following information" 

�9 total real power 

W = (P~ + P2) watts (5.12 bis) 

�9 total reactive power 

Q = ~3(P~ - P2) Var (5.13 bis) 

�9 power factor 

cos 4~ = cos {tan -~ [V'3(P~ - P2)/(P1 + P2)]} (5.15) 

Example 5.5 

Two wattmeters are connected to measure the power input to a 400 V, 50 Hz, 
three-phase motor  running on full load with an efficiency of 90 per cent. The 
readings on the two wattmeters  are 30 kW and 10 kW. Calculate (1) the input 
power to the motor, (2) the reactive power, (3) the power factor, (4) the useful 
output power from the motor. 

Solution 

1 Let the readings on the two wattmeters  be P~ and P2 .  Then, from Equat ion 
(5.12), the power to the motor  is 

PI + P2 = 30 + 10 = 40 kW 

2 From Equat ion (5.13) the reactive power is 

V/3(P~-  P2) = V'3 • 20 = 34.64 Var 

3 From Equat ion (5.14) 

~b = tan -1 [V'3(P~-  Pz)/(PI + P2)] = tan -1 (34.64/40) - 40.89 ~ 

so the power factor is 

cos r = cos 40.89 ~ = 0.756 lagging 

4 The efficiency (r/) of the motor  is defined as the useful output power (Po) 

divided by the total input power (Pi). Thus 

Po = r/Pi = 0.9 • 40 = 36 kW 
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E x a m p l e  5.6 

A 440 V three-phase motor has a useful output of 50 kW and operates at a 
power factor of 0.85 lagging with an efficiency of 89 per cent. Calculate the 
readings on two wattmeters connected to measure the input power. 

Solution 

Since efficiency is 77- Po/Pi, the input power P i -  Po/rl- 5 0 / 0 . 8 9  - 56.2 kW. 
Let the readings on the two wattmeters be P~ and P2. Then P~ + P2 = 56.2 kW. 
Now ~b = cos -1 0.85 = 31.79 ~ so 

tan 4, = 0.6197 

From Equat ion (5.14) tan 4 ) -  V3(P~ - Pz)/(P1 + P2), so 

P ~ -  P2 = tan 4) • (P1 + P2)/V/3 - (0.6197 • 56.2)//V/3 = 20.1 kW 

We now have 

P1 -% P2 - 56.2 k W  

P1 - P2 = 20.1 kW 

Adding gives 

2P1 = 76.3 kW 
P1 = 38.15 kW 

It follows that 

P2 = 18.05 kW 

5.6 SELF-ASSESSMENT TEST 

1 Give an advantage of three-phase systems over single-phase systems for 
the purpose of power transmission. 

2 Give an advantage of three-phase systems over single-phase systems for 

the purpose of power generation. 

3 Explain how three-phase emfs are generated. 

4 Explain the difference between a star-connected system and a delta- 
connected system. 

5 Explain why a star connection is more usual for power distribution 

purposes. 

6 State the meaning of the term 'phase sequence'  when applied to three- 

phase systems. 
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7 State the phase sequence of a system for which E~ = 240 sin ~ot; 
E b = 240 (sin ~ot + 120~ Ec = 240 sin (cot - 120~ 

8 How may the phase sequence of a three-phase system be reversed? 

9 If the emf generated in phase A of a three-phase system of phase sequence 
ABC is given by e = EM sin wt volts, give an expression for the emf in 
phase C. 

10 Explain what is meant by a balanced three-phase system. 

11 The phase current of a star-connected three-phase system is 25 A. What is 
the line current? 

12 State the phase displacement between the phase voltage and the line 
voltage of a star-connected three-phase system. 

13 Give the line current of a delta-connected three-phase system for which 
the phase current is 10 A. 

14 A three-phase delta-connected load has a line voltage of 415 V and a line 
current of 22 A. The power factor of the load is 0.8 lagging. Determine the 
power in the load. 

15 Give an expression for the apparent power in a three-phase load. 

16 The apparent power in a three-phase load is 35 kVA and its power factor 
is 0.6 lagging. Determine the reactive power. 

17 Two wattmeters are connected to measure the total power in a three-phase 
load and the readings are 240 W and 100 W. What is the total power in the 
load? 

18 Two wattmeters are connected as follows to measure the total power in a 
three-phase system: one has its current coil connected in the A line and its 
voltage coil connected between the A and C lines; the other has its current 
coil connected in the B line and its voltage coil connected between the B 
and C lines. Give an expression for the reading on each meter in terms of 
appropriate line voltages, line currents and phase angles. 

19 Give an expression for the power factor of a three-phase load in terms of 
the readings on two wattmeters connected to read the total power. 

20 The readings on two wattmeters connected to read the total power in a 
three-phase system are 125 W and 65 W. Determine (a) the real power, (b) 
the reactive power, (c) the apparent power, (d) the power factor. 
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5.7 PROBLEMS 

1 A balanced delta-connected load is supplied from a symmetrical three- 
phase, 400 V source and takes a phase current of 20 A. Determine (a) the 
line current and (b) the total power consumed. 

2 Three identical coils are connected in star and take a total of 3 kW from a 
three-phase, 200 V supply at a lagging power factor of 0.8. If the same coils 
are connected in delta and supplied from the same source determine (a) the 
line current taken and (b) the total power consumed. 

3 A balanced star-connected load consisting of a resistance of 1 1~ in series 
with an inductance of 15 mH in each phase is supplied from a 230 V, 50 Hz 
supply. Determine the total power consumed in complex form. 

4 Two wattmeters connected to measure the power in a three-phase circuit 
for which the line voltage is 400 V read 40 kW and - 1 0  kW. Determine (a) 
the power consumed, (b) the power factor and (c) the line current. 

5 The power in a three-phase circuit is measured using the two-wattmeter 
method. Both wattmeters read positively, one reading being twice as big as 
the other. Calculate the power factor of the circuit. 

6 A three-phase motor operates at full load with an efficiency of 90 per cent 
when supplied from a 2 kV, 50 Hz source. Two wattmeters connected to 
read the power taken from the supply read 300 kW and 100 kW. Calculate 
(a) the power input to the motor, (b) the power factor, (c) the line current, 
and (d) the useful power output from the motor. 
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6.1 SERIES RESONANCE 

We saw in Chapter 4 that under certain conditions a series RLC circuit such as 
that shown in Fig. 6.1 behaves as a pure resistance. This happens when the 
inductive reactance XL (=2-rrfL) is equal to the capacitive reactance 
Xc (= 1/2"rrfC). The circuit impedance, Z ( = ~ [ R  2 + (XL -- Xc)2]) then becomes 
equal to R since XL -- Xc - 0. This condition is called series resonance and has 
important applications in filter circuits and radio and television tuning circuits. 

Figure 6.1 

I R 

VR 

vl 

i 

L C 

VL VC 

The phasor diagram, drawn for the condition when X L -  Xo  is given in 
Fig. 6.2 and this is drawn using the current I as the reference phasor. 

Figure 6.2 

VL~ 

Vc ~ 

MR 
r I (reference) 

�9 The voltage phasor VL = IXL is drawn 90 ~ ahead of the current phasor. 

�9 The voltage phasor Vc = IXc is drawn 90 ~ behind the current phasor. 
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�9 The voltage phasor VR = IR is drawn in phase with the current phasor. 

The voltage V is the phasor sum of VL, Vc and VR and because VL = - V c  then 
V = VR. The phase angle of the circuit (the angle between the applied voltage, 
V, and the current, I) is & = 0, so that the power factor is cos & = 1. The 

condition XL = Xc occurs when 
/ 

2 rrf L - 1/ 2 rrf C (6.1) 

and this can be made to happen by the variation of L or C or f. 
The graphs of XL and Xc to a base of frequency are shown in Fig. 6.3 and it 

can be seen that: 

(1) as f--+ 0, XL --+ 0 and Xc --+ ~ 

(2) as f--+ oo, XL + ~ and Xc --+ 0 

(3) at a particular frequency (f~) XL = Xc in magnitude. 

XL 

Xcl 

Ifo 
I 
J 
I I 

f 

Figure 6.3 

This frequency is called the resonant frequency of the circuit and may be 
calculated from Equation (6.1), putting f = f0. Thus 

2rrf0L = 1/2rrf0C 
(2rrf0) 2 = 1/LC (multiplying both sides by 2rrf0/L) 

2rrf0 - 1/'v/(LC) (taking the square root of both sides) 

Finally 

f0 = 1/2rrX/(LC) (6.2) 

Also, remembering that the angular frequency w = 2rrfwe may write 

a~o = 1/~/(LC) (6.3) 

Summarizing, when an RLC circuit is in a state of series resonance: 

�9 the circuit behaves as a pure resistance; 

�9 the inductive reactance is equal to the capacitive reactance; 

�9 the applied voltage V = IR; 
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�9 the phase angle is 4' = 0 and the power factor is cos 4> = 1; 

�9 the frequency is f~ - 1 , /27rk / (LC)  and the angular frequency is 

~Oo- 1 /~ (LC) .  

Example 6.1 

Calculate the resonant frequency of a circuit consisting of a coil of inductance 
50 mH in series with a capacitor of capacitance 200 nF and a resistor of 

resistance 5 f~. 

Solution 

5fl 50mH 200nF 
, II 

v 
f 

Figure 6.4 

The circuit is shown in Fig. 6.4. Using Equation (6.2) 

fo = a /2~rX / (LC)  = 1/2~rX/(50 x 10-3x  200 x 10 -9) - 1/27rX/(10 -8) 
= 1/(2Ir • ].0 -4) " - "  104/2"/r- 1.591 • 103 Hz 

= 1.591 kHz 

Note that this result is independent of the resistance in the circuit, whether it be 
that of a separate resistor or that of the coil. 

Example 6.2 

Determine the value of capacitance to which the variable capacitor C must be 
set in order to make the circuit given in Fig. 6.5 resonate at 400 Hz. 

5mH C 

Figure 6.5 

I 



126 Resonance 

Solution 

Using Equation (6.2) f0 = 1/2~rX/(LC) and rearranging it to make C the subject 
we get C = 1/4~fo2L (squaring both sides and then multiplying both sides by 

C/fo2). Thus 

C = 1/47r 2 4002 X 5 X 10 -3 -- 31.6 x 10-6F 

Example 6.3 

A resonant series circuit consists of a capacitor having a capacitance of 0.1 ~F 
and a coil whose inductive reactance is 60 ~. Calculate the inductance of the 
coil. 

60 s r O. 1 pF 
II 

vt�9 f 

Figure 6.6  

Solution 

The circuit is shown in Fig. 6.6 and r is the resistance of the coil. Since the circuit 
is in a state of resonance we can use Equation (6.1) with f = f0: 

2ff0L = 1/2ffoC 
X, =  /2 oC 
fo = 1/2~rXLC (multiplying both sides by fo/XL) 

SO 

f0 = 1/2zr 60 • 0.1 x 10 . 6 -  26 526 Hz 

and 

L = XL/2Zrfo = 60/2zr. • 26 526 = 359.9 • 10-6H 

Impedance and current at resonance 

The graph of impedance Z = ~/[R2 + ( X L -  XC) 2] to a base of frequency is 
given in Fig. 6.7 and this shows that Z has a minimum value (=R) at the 
resonant frequency. Consequently, the circuit current at this frequency will 
have its maximum value (= V/R) as shown in Fig. 6.8. 

If the resistance is small, the current could be very large and the potential 
difference developed across the inductance (IXL) and the capacitance (IXc) 
would then be very large (many times bigger than the supply voltage V). Great 
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care must therefore be taken when dealing with series circuits containing 
inductance and capacitance. 

Example 6.4 

A coil having a resistance of 5 f~ and inductance of 10 mH is connected in series 
with a capacitor of 250 nF to a variable frequency, 100 V supply. Determine the 
potential difference across the capacitor at resonance. 

Solution 

Figure 6.9 

 oovl@ 

5s lOmH 250nF 
,f t tl 

The circuit is shown in Fig. 6.9. Using Equat ion (6.2) 

fo = 1/2~'V'[10 • 10-3x 250 • 10-91 - 3183 Hz 

Xc = 1/2"rrf0C = 1/2vr • 31.83 • 250 • 10 - 9 -  200 a 

The current at resonance is limited only by the resistance and 
I = V/R = 100/5 - 20 A. The potential difference across the capacitor is given 
by Vc = IXc = 20 • 200 = 4000 V. Note that this is 40 times greater than the 

supply voltage V. 

Example 6.5 

A 20 mH coil has a resistance of 50 1) and is connected in series with a capacitor 
to a 250 mV supply. If the circuit is to resonate at 100 kHz calculate the 
capacitance of the capacitor and its working voltage. 
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Solution 

----4 
50~ 20mH C 

I - II 

Figure 6.10 

250mV l 0 f 

The circuit is shown in Fig. 6.10. At resonance, )Co = 1/27r~(LC) s o  

C -  1/4~foZL = 1]47r 2 (100 • 103) 2 20 • 10 . 3 =  126.6 X 10-12 F 

Therefore 

Xc = 1 /2 r r f0C-  1/27r 100 • 103• 126.6 • 10 -~2-  12 571 f~ 

At resonance 

I = V/R = 250 x 10-3/50 5 m n  

The potential difference across the capacitor at resonance is 

I X  c = 5 X 10  .3 X 12 571 = 62.855 V 

The capacitor working voltage must therefore be about 65 V. 

Q-factor 
The fact that the circuit behaves as a pure resistor and that the power factor is 
unity seems to indicate that there is no reactive power in the circuit at 
resonance. This is not so: what is happening is that the reactive energy is 
continuously being transferred between the capacitor, where it is stored in the 
electric field, and the inductor, where it is stored in the magnetic field. Since this 
energy transfer is taking place within the circuit, it appears from the outside as 
though there is no reactive power. As the resistance of the circuit becomes 
smaller so the current becomes larger and the stored energy (12XL = IZXc) 

oscillating between the capacitor and the inductor becomes much larger than 
the energy (I2R) dissipated in the resistor. 

The ratio of 12XL to IZR is called the Q-factor (quality factor) of the coil or 

circuit so that 

Q = IZx~/(I2R) -XL/ /R  

and since XL = 2"rrf0L = w0L 

Q = woL/R (6.4) 
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Since mo = 1/x/(LC), then Q - L/RV'(LC) = ~L/(RV'C) ,  so 

e = (1/R)[V(L/C)] (6.5) 

Q is the ratio of inductive reactance to resistance and since the unit of both of 
these is the same (the ohm), then Q itself is dimensionless. 

Q-factors are of the order of 10 in the audio frequency range (up to about 
20 kHz), whereas in the radio frequency range they are of the order of 102 and 
in the microwave range they can be as high as  10  3 . The bigger the Q-factor the 
easier it is for the circuit to accept current and power at the resonant frequency 
so that, for example, in radio and television receivers a particular station can be 
selected and others (which have their own resonant frequency) can be 
rejected. 

Remember:  reducing the resistance in the circuit increases the Q-factor. 

Example 6.6 

The circuit shown in Fig. 6.11 operates at the resonant frequency of 11.25 kHz. 
Determine (1) the Q-factor of the circuit, (2) the capacitance of the capacitor, 
and (3) the current in the circuit. 

5D 5mr C 
It 

"YI{) 

Figure 6.11 

Solution 

1 Using Equation (6.4) the Q-factor of the circuit is given by Q = woL/R, so 

Q - 27r 11.25 • 10  3 X 5 X 10-3 / /5  -- 70.68. 

2 At the resonant frequency, the capacitive reactance (Xc) is equal to the 
inductive reactance (XL). The inductive reactance is 
27rf0L - 2rr 11.25 • 10  3 X 5 X 10  -3 -- 353.4 ~. The capacitive reactance of 
the capacitor is therefore also 353.4 fl and its capacitance 

C -  1/27r 11.25 • 103 • 353.4 - 40 • 1 0 - 9 F  

3 The current is I = V/R - 24/5 - 4.8 A. 

Filter applications 

Series RLC circuits are commonly used in filter applications and a basic 
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Figure 6.12 
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bandpass filter circuit is shown in Fig. 6.12. A bandpass filter is designed to 
allow signals at the resonant frequency (f0) and those within a band of 
frequencies above and below f0 to pass from the input terminals to the output 
terminals. Signals at frequencies outside this band are passed at a very much 
reduced level or not at all and are said to be rejected. 

Bandwidth 
For a signal to be 'passed' it has to have a voltage not less than 0.707 of the 
voltage at the resonant frequency f0. The current (I), similarly, will be not less 
than 70.7 per cent of the current at f0. The lowest frequency at which V0 has this 
minimum value is called the lower cut-off frequency and the highest frequency 
at which V0 has this minimum value is called the upper cut-off frequency. The 
band of frequencies which are 'passed' are those between the lower cut-off 
frequency and the upper cut-off frequency and  this is called the pass-band. 
These points are illustrated in Fig. 6.13. 

o.7o7v I---~/ 

yi 
0 f fo f2 r f  

Figure 6.13 

The pass-band is the band of frequencies lying between f~ and f2 and this is 
also referred to as the bandwidth (B) of the circuit so that 

B - ( f2  - f l )  ( 6 . 6 )  

The unit of bandwidth is the hertz or radians per second if angular frequency is 
used. 

Half-power frequencies 
As we have seen, at resonance the current is a maximum so that the power in 
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the resistor is also a maximum. Now if the maximum power is PM = IM 2R at f0 
then at fl (or f2) the power will be 

P~ = P2 = (0.7071M) 2R = 0.5 IM2R = 0.5 PM 

For this reason f~ and f2 are called the half-power frequencies. 

The dB notation 

The logarithm to the base ten of the ratio of two powers P~ and P2 is called the 
bel. Because this is rather large it is more usual to express power ratios in 
decibels (dB). This means multiplying the logarithm of the ratio by 10. By 
definition, a power P2 is 10 logao (P2/P1) dB above the power P1. 

Since P = V2/R, we see that a voltage V2 is 10 loglo (V2/V1) 2 dB above a 
voltage V1 i.e. V2 is 20 loglo (1/2/171) dB above V1. 

For the half-power frequencies f~ and f2, the powers (PI and P2) are equal 
to 0.5PM. Therefore P1 is IOIogIo(P~/PM) dB above PM, i.e. Px is 
10 log10 (0.5 PM/PM) dB above PM" 

Now 10 lOgl0 (0.5) - - 3  so that P~ is in fact - 3  dB above PM which means 
that it is 3 dB below PM. It is said to be 3 dB down on PM. For this reason the 
frequencies fl and fa are also referred to as the - 3  dB points. 

Example 6.7 

The maximum current in a bandpass filter circuit is 25 mA. Calculate the 
current at the lower and upper cut-off frequencies. 

Solution 

Let the current at the lower cut-off frequency be/1 and that at the upper cut-off 
frequency be 12. Then 11 - 12 - 0.707 IM -- 0.707 • 25 -- 17.68 mA. 

Example 6.8 

A bandpass filter circuit has a lower cut-off frequency ( f~)= 12 kHz and an 
upper cut-off frequency (f2) - 18 kHz. Calculate the bandwidth of this circuit. 

Solution 

Using Equation (6.6) the bandwidth is B - f2 - fl = (18 - 12) kHz = 6 kHz. 

Gain and phase diagrams 

In the circuit of Fig. 6.12 the ratio Vo/V i is called the gain ratio and is denoted 
by H. Since go = IR and V i -  I(R + j~oL + 1//jcoC) then 

H = IR/I(R + jo~L + 1/jwC) (6.7) 
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Dividing both numerator and denominator by IR we have 

H = 1,/[1 + j~oL//R + 1/jwCR] 

H -  1/{1 + j [wL /R-  1/o~CR]} (6.8) 

Now from Equation (6.4), 0 = o)oL//R and multiplying both sides by ~o/~o0 we 
get 

( OJo/OJo)O - woL// R (6.9) 

Also, since woL/R = 1/woCR (because woL - 1/woC at resonance then) 

Q = 1/woRC (6.10) 

Multiplying both sides by ~o0//w we have 

(Wo/w)Q- 1/wRC (6.11) 

Substituting from Equations (6.9) and (6.11) into Equation (6.8) we see that 

H -  1,,/{1 + jQ[(w/O)o) - (o90/o9)]} (6.12) 

The phase angle is given by 

tan -~ [(~oL - 1/wC)/R] (6.13) 

If H is plotted to a base of frequency we obtain the graph in Fig. 6.14 and the 
graph of the phase angle to the same base is given in Fig. 6.15. Note that when 
XL = Xc, & = 0; when XL = 0, ~ lies between 0 and -90~ when Xc = 0, 4~ lies 
between 0 and +90 ~ 

Figure 6.14 
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6.2 PARALLEL RESONANCE 

Also in Chapter 4 we saw that under certain conditions the parallel RLC circuit 
behaves as a pure resistor because the phasors representing the circuit supply 
voltage and the total current drawn from the supply are in phase with each 
other. This condition is known as parallel resonance and in order to analyse it 
more fully the circuit diagram is given again in Fig. 6.16, the relevant phasor 
diagram being shown in Fig. 6.17. 

v ,t( 

Figure 6.16 
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Figure 6.1 7 

The important relationships in the circuit of Fig. 6.16 are: 

I = IC + IL phasorially (6.14) 

I c -  V//Xc (6.15) 

I L -- V / /ZL  (6.16) 

where ZL = R + JXL - V'(R 2 + XL2). 
The phasor diagram of Fig. 6.17 is drawn with the supply voltage V as the 

reference phasor. The current phasor Ic is drawn leading V by 90~ the current 
phasor IL is drawn lagging V by an angle 4~L where the - tan-~ (XL//R) and is the 
phase angle of the branch containing the inductance. 

From this phasor diagram it is seen that for the circuit supply voltage (V) and 
the total current drawn from the supply (I) to be in phase, 

Ic = IL sin 4~L (6.17) 

where Ic is the current through the capacitor C, IL is the current through the 
inductance L, 4~L is the phase angle of the branch containing R and L, and 

4u - sin-~ (XI_,//ZL) (6.18) 

From Equations (6.15), (6.16) and (6.18) we have, by substitution in Equation 
(6.17), 

v / x c -  VXL/[X/(R ~ + XL ~) • X/(R ~ + X~2)] 

Dividing throughout by V and putting Xc - 1/2-rrf0C and XL -- 2"rrf0L (f~ being 
the resonant frequency) we have 

2-rrfo C - 2-rrfoL/[R 2 + (2"nfoL)21 
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Multiplying both sides by [R 2 + (27rfoL)2]//27rf0 C we get 

R 2 + (27rf0L)2 = L//C (6.19) 

(2rrfoL) 2= (L/C)  - R 2 
(27rf0) 2 = (1/LC) - (R//L) 2 (dividing both sides by L 2) 

2rrf0 = ~/[(1/LC) - (R/L)21 
f0 = (1/27r)~/[ (1/LC)-  (R//L) 2] (6.20) 

If the resistance (R) is very much smaller than the inductive reactance (2rrf0L), 
which is normally the case, then Equation (6.19) becomes (2rrf0L) 2 = L / C  so 
that 

(27rf0) 2 = 1//LC (dividing both sides by 1//L 2) 

2"n'f0 = X/(1/LC) 
fo = 1/2rrV'(LC) (6.21) 

Compare this with the Equation (6.2) for the resonant frequency of a series 
RLC circuit. 

Dynamic impedance 
Remembering that the equivalent impedance (Zeq) of a parallel combination of 
two impedances Z1 and Z2 is given by Zeq = Z 1 Z 2 / ( Z  1 Jr- Z2) we see that the 
general expression for the impedance of the parallel RLC circuit of Fig. 6.16 is 

Z = (R + jwL) ( - j /wC) / [ (R  + jwL) + ( - j /wC)]  

Dividing the numerator and denominator by ( - j / w C )  we have 

Z = (R + j w L ) / [ ( R / - j / w C )  + ( j w L / - j / w C )  + ( - j / w C / - j / w C ) ]  
= (R + jwL)/[jwCR - w2LC + 1] 

Again, assuming that wL >> R, this reduces to 

Z = jwL/[jwCR + (1 - w2LC)] (6.22) 

2 2 / At resonance, w =w0 = 1 L C a n d t h e n  

Z -  jwoL/[jwoCR + (1 - 1)] = L / C R  

This has the characteristics of a pure resistance and is called the dynamic 
impedance (Zd) of the tuned circuit. Thus 

Zd - L / C R  (6.23) 

Just as in the case of the series tuned circuit, in this parallel circuit the ratio 
o~oL/R is called the Q-factor of the circuit. In this case, though, as Z~ becomes 
larger, so the current becomes smaller and the Q-factor becomes larger. 
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A coil having an inductance of 200 ~H and a resistance of 50 1) is connected in 
parallel with a capacitor having a capacitance of 120 pF to a 100 V supply. 
Determine  (1) the resonant frequency, (2) the dynamic impedance of the 
circuit, (3) the Q-factor of the circuit, and (4) the current in the circuit at 
resonance. 

Solution 

Figure 6.18 

m 

'00V   l 
The circuit is shown in Fig. 6.18. 

1 From Equat ion (6.20), 

fo = (1/27r)N/[(1/LC) - (R/L)e]} 
= (1/27r)V{[(1/(200 x 10 -6x  120 x 10-~2)] - (50/200 • 10-6) 2] 
= (1/2rr)V(4166 • 101~ 6.25 x 101~ 
= 1.02 MHz 

Note that (R /L) :  < 1/LC.  

2 From Equat ion (6.23), 
Zd = L / C R  = 200 • 10-6/(120 • 10 -12 • 50) = 33.3 kf~ 

3 The Q-factor is given by 
o~oL/R = 2rr • 1.02 • 106 • 200 • 10-6/50 - 25.64 

4 At resonance, the current is limited by the dynamic impedance so 

I = V/Zd = 100/(33.3 • 10 3) = 3 m A  

Bandwidth 

We have seen that, assuming R ,~ XL, the impedance of the circuit of Fig. 6.16 is 
given by Equat ion (6.22) to be 

Z = joJL/[joJCR + (1 - ~o2LC)] 

Factorizing the denominator  we get 

Z -  j~oL/{j~oCR[1 + (1 / j~CR)  - (~LC/j~oCR)]} 
= j~oL/{joJCR[1 + ( L C / j o ~ C R ) ( ( 1 / L C ) -  ~o2)]} 
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Dividing the numerator and the denominator by joJCR this becomes 

Z = (L /CR) / [1  + (LC/ jwCR){ (1 /LC)  - w2}] (6.24) 

Now at resonance, L / C R  = Zd, the dynamic impedance; 1/wCR ( -o~L/R)  
= Q; and LC = 1/oJ0 2. Substituting these into Equation (6.24) we obtain 

Z = Zd/[1 4- (Q/j(.o02)(~Oo 2 -  0)2)1 

Rearranging to put the 'j' in the numerator we have 

Z = Zd//[1 + (jQ/jwo (0) 2 -  ~o02)] (6.25) 

For frequencies close to resonance, we could say that ~o = O)o + &o where &o 
is a small frequency deviation. In that case 

(o2_ 2)_  2 ~o0 (O)o + &o) 2 -  O)o 
2 2 = Wo + 2Wo6W + 6w 2 -  w o 

= 2w06w + 60-12 
= 2~o06o~ (since 6o02 --, 0) 

Substituting this in Equation (6.25) we have 

z -  Zd/[1 + Zd/[1 + j2Q(&o/o 0)] 

The magnitude of this is 

Z -  Z,~/V'{1 + [2Q(6oJ/w0] 2} (6.26) 

The bandwidth of a parallel resonant circuit is defined to be the frequency 
range between the two frequencies for which  Z / / Z d  --  1/V'2, and from Equation 
(6.26) Z / Z d -  1/V'{1 + [2Q(3o)/o~o)] 2, so to obtain the bandwidth we put 
1/V'{1 + [2Q(3o)/o)0)] 2= l/X/2. Thus, inverting both sides and taking the 
square root, we get 

1 + [2Q(6w/wo)] 2= 2 
[2Q(&o/o)0)] 2= 1 

2Q(aw/Wo) = 1 
6W/Wo = 1/2Q 

aw = Wo/2Q 

The bandwidth is the band of frequencies from -6o~ to + 6oJ (i.e. 26oJ). Thus 

B - 26w = 2w0/2Q = wo/Q 

Finally 

B -  a~o/Q (6.27) 

Example 6.10 

Determine (1) the bandwidth of the circuit in Example 6.9, (2) the effect on the 
bandwidth of this circuit of adding a resistance of 50 11 in series with the coil. 
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Solution 

1 From Equation (6.27) the bandwidth is given by 
B - ~o0/Q(rad S - 1 )  - -  fo//Q(Hertz). Therefore 

B -fo//Q = 1.02/25.64 = 0.04 MHz 

2 Note that the addition of 50 f~ in the inductive branch has negligible effect 
on the resonant frequency so too is unchanged. This is because, as we saw in 

/ 2 
Example 6.9, 1/;LC ~> (R /L) .  Since Q - tooL~R, then with too and L 
unchanged, the effect of doubling R is to halve Q and to double B. The 
bandwidth is therefore doubled. 

6.3 SELF-ASSESSMENT TEST 
1 State the condition for a series circuit containing inductance and 

capacitance to be in a state of resonance. 

2 Give an expression for the resonant frequency of a series RLC circuit. 

3 What is the power factor of a series RLC circuit when it is in a state of 
resonance? 

4 A series circuit has an inductance of 2 H and a capacitance of 8 ~F. What 
is its resonant angular frequency? 

5 A series circuit has a resistance of 2 1), an inductance of 10 mH and a 
capacitance of 0.1 I~F. What is the value of the impedance of this circuit at 
resonance? 

6 Explain why the voltage developed across the inductor and capacitor of a 
series resonant circuit could be many times greater than the supply 
voltage. 

7 Define the Q-factor of a coil or circuit. 

8 Give the unit of Q. 

9 How may the Q-factor of a circuit be increased? 

10 Explain what is meant by a 'bandpass filter'. 

11 Define the bandwidth of a circuit. 

12 Give the unit of bandwidth. 

13 Explain the meaning of 'half-power frequency'. 

14 Give the relationship between two powers P1 and P2 in decibel form. 

15 State the condition for a parallel circuit containing inductance and 
capacitance to be in a state of resonance. 
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16 Give an expression for the resonant frequency of a parallel circuit 
assuming that the resistance in the circuit is very much smaller than the 
inductive reactance. 

17 Give an expression for the dynamic impedance of a parallel circuit. 

18 State what happens to the Q-factor of a parallel circuit as its dynamic 
impedance becomes larger. 

19 State whether the current in a parallel circuit at resonance is a maximum 
or a minimum. 

20 Give an expression for the bandwidth (B) in terms of the angular resonant 
frequency (o J0) and the Q-factor. 

6.4 PROBLEMS 

1 A coil is connected in series with a capacitor of 20 IxF to a 200 V variable 
frequency supply. The current is a maximum at 50 A when the frequency is 
set to 50 Hz. Determine the resistance and inductance of the coil. 

2 A coil having an inductance of 1 H and a resistance of 5 ~ is connected in 
series with a resistance of 5 fl and a capacitor of 15.8 txF. The whole 
combination is connected to a 200 V variable frequency supply. Determine 
(a) the resonant frequency, (b) the current in the circuit at resonance, (c) 
the corresponding voltage developed across the capacitor. 

3 A series circuit consists of a 40 ~ resistor, a 0.5 H inductor and a variable 
capacitor connected across a 100 V, 50 Hz supply. Calculate (a) the value 
of the capacitance required to give resonance, (b) the voltages across the 
resistor, the inductor and the capacitor at resonance, and (c) the Q-factor 
of the circuit. 

4 A bandpass filter consists of a capacitor of 5 nF in series with a coil of 
inductance 10 mH having a resistance 5 l~ and a resistor of 75 l-I resistance. 
The output voltage is taken across the resistor. Determine (a) the resonant 
frequency, (b) the Q-factor of the coil and (c) the bandwidth of the filter. 

5 Determine the voltage gain as a ratio (Vo/Vin) and in decibels of the circuit 
of Problem 4 at 20 kHz. 

6 A voltage Vi is applied to a circuit consisting of a capacitor in series with a 
resistor. An output voltage Vo is taken across the resistor (this constitutes 
a simple high-pass filter circuit). 

(a) Obtain an expression for the voltage gain H(j00). 
(b) If 1/CR = 1000 obtain the voltage ratio in dB for oJ = 10; to = 100 and 

~o = 1000 rad -1. Comment  on the result. 
(c) State how the circuit could be converted into a bandpass filter circuit. 
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7 A circuit consisting of a coil of inductance 250 mH, having a resistance of 
20 lq, in parallel with a variable capacitor C is connected to a 200 V 50 Hz 
supply. Determine (a) the value of C required for the circuit to resonate, 
(b) the power absorbed at resonance, and (c) the ratio of the current 
through the capacitor to the supply current at resonance. 

8 A resistor of 90 fl resistance is connected in series with a coil of 
inductance 500 mH, having a resistance of 10 ~. This series circuit is 
connected in parallel with a 20 IxF capacitance across a 250 V variable 
frequency supply. Determine (a) the resonant frequency of the circuit, (b) 
the resonant frequency if the 90 fl resistor is short circuited and (c) the 
current drawn from the supply in each case. 

9 A coil of inductance 10 mH and resistance 50 ~ is connected in parallel 
with a capacitor of 0.01 ~F. Determine (a) the resonant frequency, (b) the 
Q-factor, (c) the bandwidth of the circuit, and (d) the half-power 
frequencies. 

10 A series circuit consisting of an inductance of 0.3 H, having a resistance of 
10 1~, and a variable capacitor C~ is supplied from a 100 V, variable 
frequency, source. 

(a) Determine the value of C1 necessary for the circuit to operate 
resonantly at 50 Hz. 

(b) A second variable capacitor, C2, is now connected in parallel with the 
original circuit and the supply frequency is adjusted to 60 Hz. 
Determine the value of C2 in order that the circuit still operates with 
minimum current. 

11 A coil of resistance 2 11 has a Q-factor of 80 and is to work at a frequency 
of 1 kHz. Determine 

(a) the value of the equivalent parallel resistance of the coil for the same 
Q-factor, 

(b) the additional parallel resistance required for the Q-factor to be halved 
at the same frequency, 

(c) the capacitance required to give the circuit a dynamic impedance of 
100 k12, and 

(d) the values of the Q-factor and frequency under condition (c). 

12 A coil having a Q-factor of 100 is connected in parallel with a capacitor of 
100 pF. The circuit resonates at a frequency of 5 MHz. Determine (a) the 
bandwidth of the circuit, (b) the amount of resistance required to be 
placed in parallel with the capacitor in order to increase the bandwidth to 
250 kHz, and (c) the amount of resistance required to be placed in series 
with the inductor in order to produce the same bandwidth. 

13 The aerial circuit of a radio receiver consists of a tuned circuit comprising 
a coil of inductance 100 ~H and resistance 5 ~ in parallel with a variable 
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capacitor. A resistor of 2 kl~ is connected in series with this parallel circuit 
and the whole combination is connected to a 10 V, 300 kHz supply. 
Calculate (a) the value of the capacitance required to give resonance at 
300 kHz, (b) the dynamic impedance of the circuit, (c) the Q-factor, and 
(d) the current through the capacitor at resonance. Show that the ratio of 
the capacitor current to the total current is equal to the Q-factor. 
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7.1 INTRODUCTION 

For circuits which are more complicated than those considered in the previous 
chapters, it is still possible to analyse them using the methods described there 
but the working can become extremely tedious. Two of the methods devised to 
make things more manageable are the nodal voltage and the mesh current 
approaches. These lend themselves to matrix methods of solution, both 
manually and by computer. We shall begin therefore by setting out the relevant 

parts of the matrix algebra techniques. 

7.2 MATRICES 

A matrix is a rectangular array of numbers (or letters or functions) arranged in 
rows and columns. The individual numbers are called elements of the matrix 
and these are often identified by the use of double subscripts, the first part 
indicating the row and the second indicating the column in which the element is 
situated. Thus, for example, element a34 is an element in the 4th column of the 
3rd row. Matrices are usually enclosed by square brackets so that 

9 
6 - 1  1 

is a matrix having two rows and four columns. It is said to be a matrix of order 

2 • 4. In this matrix, element a13 = 9 and element a21 = - 4 .  

Example 7.1 

Write down the matrix of order 4 x 2 for which all --1; a12-  O; a21---3; 
a22 = 4; a31 = -6 ;  a32 = 9; a41 = 0 and a42 = 5 

Solution 

A matrix of order 4 x 2 has four rows and two columns and in this case the 

elements are defined numerically so we may write 
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1 0 
3 
6 
0 

A row matrix 

A row matrix has only one row. Thus [X 
A row matrix is also called a row vector. 

Y Z] is a three-column row matrix. 

A column matrix 

A column matrix has only one column. Thus 

1 

2 
is a four-row column matrix. A column matrix is also called a column vector. 

Matrix addition and subtraction 

This is only possible for matrices of the same order and is carried out by adding 
or subtracting corresponding elements of the matrices being added or sub- 
tracted. 

Example 7.2 

If 

A = 6 and B = 3 X 2 

2 Y 4 6 

obtain (1) A + B, (2) A - B. 

Solution 
1 A + B =  

2 A - B =  

1 I y ( 4 + 3 )  ( 6 + X )  ( Z + 2 )  = 
+ ( - Y )  ( 2 + 4 )  ( - 1 + 6 ) . ]  

[ 
Y -  ( - Y )  ( 2 - 4 )  ( - 1 - 6  Y 

,] 
( 6 + X )  ( Z + 2 ) 1  

6 5 3 
( 6 - X )  - 2  (Z 272)] 

Note that A + B = B + A so that the process is commutative. It is also 
associative, so that for the addition of three matrices A, B and C, 
A + (B + C) - (A + B) + C. 
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Multiplication of matrices 

Multiplication of two matrices is only possible if the number of rows in one of 
the matrices is equal to the number of columns in the other. If two matrices (A 
and B) are multiplied to give a third matrix (C) then any element (Cm~) of C is 
found by adding the products of all the elements in row m of A with the 

corresponding elements in column n of B. 

Example 7.3 

If 

A [: :] and  [: ;] 
obtain (1) AB,  (2) BA. 

Solution 

1 Let C = AB. Then 

c [i 
~1_  [(3 x 9) + (2 • 6) 

( 5 • 2 1 5  

( 3 x 4 ) + ( 2 •  26] 

( 5 •  •  51 27 

2 Let D = BA. Then 

~] = [(9 • 3) + (4 x 5) 

(6 • 3) + (7 • 5) 

 9x2 + 4Xl ] = E47 22] 
( 6 • 2 1 5  53 19 

Note that C :/: D so that A B  4= BA. The multiplication process is therefore not 
commutative and care must be taken to multiply in the correct order. 

The determinant of  a matrix 

The determinant of a matrix is a number which is obtained by subtracting the 
sum of the products of the elements along the diagonals to the left from the sum 
of the products of the elements along the diagonals to the right. The symbol for 
the determinant is A and the elements are enclosed by vertical lines. 

Example 7.4 

Find the determinant of the matrix 

[i :1 



144 Nodal and mesh analysis 

Solution 

3 2 
A =  

5 1 

The product of the elements along the diagonal to the right is 3 x 1 = 3. 
The product of the elements along the diagonal to the left is 2 • 5 = 10. 
Therefore A = 3 - 10 = -7 .  

Example 7.5 

Find the determinant of the 3 • 3 matrix 

4I~ 240 i l  

Solution 

A =  4 2 1 

2 4 3 

5 0 6 

The sum of the products of the elements along the diagonals to the right is 

( 4 x 4 x 6 ) + ( 2 x 3 x 5 ) +  ( 1 x 2 x 0 ) = 1 2 6  

The sum of the products of the elements along the diagonals to the left is 

( 1 • 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5  

Therefore A = 126 - 44 = 82. 
It might be found helpful to set out the elements of the determinant again 

alongside the original one to see the three diagonals in each direction. 

The minor of  an e lement  

This is defined as the determinant of the submatrix obtained by deleting the 
row and the column containing the element. Thus for the matrix 

21 a22 a23| 
31 a32 a33.] 

the minor of element a21 is 

a~2 a13 

a32 a33 



Cofactors 

The cofactor of an element am,, 

the minor of the element. 
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in a square matrix is defined to be (-1)m+" times 

E x a m p l e  7.6 

Find the cofactors of the elements in row 1 of the matrix 

A ___ 1 3 4 
2 3 

1 - 2  

Solut ion 

The cofactor of element all is found by removing the first row and the first 
column and multiplying the determinant  of the resulting 2 • 2 submatrix (i.e. 
the minor of the element) by (--1) (1+1). Thus the cofactor of the element all is 

(_1)~1+1)]2 3 

1 - 2  
- ( -1)2[ (2  X - 2 ) -  (3 • 1 ) ] -  - 7  

Similarly, by removing the first row and the second column we find the cofactor 
of a12. Therefore the cofactor of the element a12 is 

(--1)( 1+2 ) 
2 3 

1 - 2  
- ( -1 )3[ (2  • - 2 )  - (3 • 1)] : 7 

We remove the first row and the third column to find the cofactor of the 
element a13. Therefore the cofactor of the element a13 is 

1)4[(2 • 1) - (2 • 1)1 = 0 

Evaluation of A using cofactors 

Determinants  can be calculated in terms of cofactors using the rule 

A -  E am~C,,,~ (7.1) 
m = l  

where x is the order of the square matrix, a,m is the element, and Cm~ is the 
cofactor of the element. 

E x a m p l e  7.7 

Evaluate the determinant  of the matrix 
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2Ii - 41 4i 1 
Solution 

This is a square matrix of order  3. The elements in column I (n = 1) are all 

a21 - 0; a31 = 4. F rom Equat ion  (7.1), taking n - 1, 
3 

A --  ~, amlCml -- allCll q- a21c21 -Jr- a31c31 
m=l 

Now Cll is the cofactor of e lement  a~l and by definition 

= 2; 

C l , -  ( - 1 )  C1+1) 
a22 a23 

a32 a33 

Similarly 

C21 -- (__1)(2+1) 
a12 a13 

a32 a33 

and c31-  (--1) (3+1) 
a12 a13 

a22 a23 

Therefore  

A -  2 ( - 1 )  2 
4 - 2  

- 1  - 1  
+ (0 X c21 ) + 4(_1)41-21 

4 

�9 I 4 - 2  
= ( 2 ) [ - 4 -  2] + ( 4 ) [ 4 -  16] 

= - 1 2  - 48 - - 6 0  

C r a m e r ' s  r u l e  

This is most  useful for solving s imultaneous equations using matrix methods.  A 
set of s imultaneous equations with unknowns  in x may be written 

A x -  B 

where A is a rectangular  matrix of the coefficients of x and B is a column 

matrix. Cramer ' s  rule states that to find Xm we obtain the de terminant  A of A 

and divide it into A m, where A m is the de terminant  of the matrix obtained by 
replacing the mth column of A by the column matrix B. 

E x a m p l e  7.8 

The three mesh equations of a certain circuit are 

51~+ 212+ 1 3 -  5 
I~ + 1 0 1 2 - 2 1 3 -  10 

21~-  3 1 2 + 4 1 ~ -  0 

Dete rmine  the current I~. 
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Solution 

In matrix form the equations may be written [A][I] = [B] where 

A=I521 _3102 _11 and B =  I i ! l  

Using Cramer's rule we have I~ - A~/A. 

A is the determinant of A and 

A =  5 2 1 
1 10 - 2  
2 - 3  4 

The sum of the products of the elements along the diagonals to the right is 

(5 x 10 x 4) + (2 • - 2  x 2) + (1 x 1 • -3 )  = 2 0 0 -  8 - 3 = 189 

The sum of the products of the elements along the diagonals to the left is 

( 1 x 1 0 x 2 ) + ( 2 x l  x 4 ) + ( 5 x - 2 x - 3 ) = 2 0 + 8 + 3 0 = 5 8  

Therefore 

A = 1 8 9 -  58 = 131 

To find A1 we replace the first column of matrix A with the column matrix B 
and calculate the determinant of the resulting matrix. Thus 

AI = 5 2 1 
10 10 - 2  
0 - 3  4 

The sum of the products of the elements along the diagonals to the right is 

( 5 • 2 1 5 2 1 5 2 1 5  • 2 1 5  

The sum of the products of the elements along the diagonals to the left is 

(1 x 10 x 0) + (2 x 10 x 4) + (5 x - 2  x -3 )  = 80 + 30 = 110 

Therefore 

A1 = 1 7 0 -  110 = 60 

F i n a l l y ,  I 1 --  Al/A = 60/131 - 0.458 A 

7.3 NODAL VOLTAGE ANALYSIS 

This method of circuit analysis involves identifying the nodes in a circuit, 
selecting one of them as the reference node and then referring the voltages at 
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all the other nodes to it. By applying Kirchhoff's current law to each of these 

other nodes in turn, a set of equations can be obtained from which the various 
nodal voltages may be calculated. The node chosen as the reference can be 
purely arbitrary but will normally be the one connected to an earthed or 
grounded part of the circuit. Otherwise the node at the bottom of the circuit is 
usually chosen. 

To illustrate the method, first consider the circuit shown in Fig. 7.1. 

Figure 7.1 

1 

I1 

FII 
t i2 

R3 

This circuit has just two nodes which are identified as 1 and 2. Let the voltage of 
nodes 1 and 2 be V 1 and V2, respectively. Applying KCL to node 1 we have 

I s -  I, + 12 + 13- ( V l  - V2)/ /R1 Jr- ( V  1 - V 2 ) / R  2 Jr ( V  1 - V 2 ) / R  3 

We choose the reference node to be node 2 and, since only potential differences 

are important, we can make V2 = O: 

I s -  V~[1/R~ + 1/R2 + 1/R3] 

Using conductances (G - I//R) we have 

Is = VI[G1 + G: + G3] 

Now let us consider the slightly more complicated circuit of Fig. 7.2 which has 
three nodes. The three nodes are identified as 1, 2 and 3 and we choose node 3 
as the reference. Let the node voltages be V~, V2 and V3. Applying KCL to node 
1: 

I -  11 Jr- 12 Jr- 13 -- ( V  1 - V3) / /R I  + ( V  1 - V 3 ) / R  2 Jr- ( V  1 - V 2 ) / R  3 

D 
Figure 7.2 

1 R3 13 2 " l ~ .,~ ,...- 

i l l  I2 I I 

[ ~R1 4 

3 

R~ 
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Setting the reference voltage to zero, V3 = 0, and then we have 

I -  V~/R~ + V1/R2 + (V, - Vz)/R3 

Using conductances 

I = G1 V1 .Jr_ GzV2 + G3(V 1 _ V2 ) 

Finally 

(G1 + G2 + G 3 ) V 1 -  G3V2 = I 

Applying KCL to node 2: 

(7.2) 

& = & + h  
( V  1 -- V2)/R 3 = ( V  2 - V 3 ) / R  4 + ( V  2 - V3)/R 5 

It is vitally important to get the signs correct here. For a current leaving a node, 
the node voltage is positive with respect to the other node. Thus we write 
( V 2 -  V3)/R4 for/4 which leaves node 2 and ( V 2 -  V3)/R5 for 15 which leaves 
node 2. However, for 13 which enters node 2 we must write (V1 - Vz)/R3. 

Using conductances and putting ~ = 0 we get 

G3( V 1 -- V2) : G4 V 2 + Gs V 2 

Rearranging, we have 

( G  3 --]- G 4 -~- G 5 ) V  2 - G 3 V  , --" 0 (7 .3 )  

We see from Equations (7.2) and (7.3) that for node 1: 

�9 the coefficient of I/1 is the sum of all the conductances connected to node 1; 

�9 the coefficient of V2 is ( - 1 )  times the conductance connected between node 
2 and node 1; 

�9 the right-hand side of the equation is the current flowing into the node from 
the source I; 

and for node 2: 

�9 the coefficient of V2 is the sum of all the conductances connected to node 2; 

�9 the coefficient of V1 is ( - 1 )  times the conductance connected between node 
1 and node 2; 

�9 the right-hand side of the equation is zero because there is no source 
feeding current directly into node 2. 

In matrix form Equations (7.2) and (7.3) may be written 

-G3  (G3 + G4 + Gs) Vz 
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This is of the form A x  = B so that Cramer's rule may be used to solve for V~ 
and V2. 

Circuits with voltage sources 

The circuits considered in the previous examples have had current sources only. 
If a voltage source exists it could be replaced by its equivalent current source 
and then the analysis proceeds as described above. Otherwise the analysis is as 
shown in the following examples. 

Example 7.9 

Obtain an expression for the voltage at node 1 in the circuit of Fig. 7.3. 

Figure 7.3 

Vs,( 

5 R1 1 R3 2 R5 3 
- [ ] -  - I I I ] - 

) R2 R4 ( Vs2 

Solution 

The nodes are identified as 1, 2, 3, 4 and 5, their voltages being V1, V2, V3, V4 and 
Vs, respectively. Node 4 is taken to be the reference, so V4 = 0. Also we see that 
V5 = Vs~ and that I/3 = Vs2. We therefore have two unknown node voltages, 
and to solve for them we need two equations. 

Applying KCL to node 1 and using conductances rather than resistances we 
have, assuming all currents flow away from the node, 

G3(V1 - g2) -+- G2(V1- g4) + GI(V1-  V5)= 0 

G3V1 - G3V2 + G2V1 - 0 + G1VI - G1Vsl = 0 

(G~ + G2 + G3)V1- G3V2 = G~Vs~ (7.5) 

Applying KCL to node 2, again using conductances, 

G3(V2- V, )  + G 4 ( V 2 -  V4) + Gs(V2- V3)= 0 

G3V2 - G3VI + G4V2 - 0 + G 5 V  2 - GsVs2 = 0 

(G3 + G4 + G s ) V 2 -  G3V~ = GsVs2 (7.6) 

From Equations (7.5) and (7.6) we see a similar pattern to that in Equations 
(7.2) and (7.3) emerging: for node 1, 
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�9 the coefficient of V1 is the sum of all the conductances connected to node 1, 

�9 the coefficient of V2 is ( - 1 )  times the conductance connected between node 
2 and node 1, 

�9 the right-hand side of the equation is the current being fed directly into the 
node from source Vs~; 

and for node 2, 

�9 the coefficient of V2 is the sum of all the conductances connected to node 2, 

�9 the coefficient of V~ is ( - 1 )  times the conductance connected between node 
1 and node 2, 

* the right-hand side of the equation is the current being fed directly into the 
node from source Vs2. 

In matrix form Equations (7.5) and (7.6) may be written 

- G  3 (G3 + G 4 + Gs) Vs2GsJ 

Using Cramer's rule to solve for V~ we have V1 - A1/~k. Now 

A 
(G 1 + G 2 + G3) - G  3 

-G3  (G3 + G4 + Gs) 

The sum of the products of the elements along the diagonals to the right is 

(G, + G2 + G3)(G3 + G4 + Gs) 

The sum of the products of the elements along the diagonals to the left is 
(-- G3)( -  G3) = G3 2, so 

A = ( G ,  + G 2 + G 3 ) ( G 3 + G 4 + G s ) - G 3  2 

Now A 1 is A with the first column replaced by the column vector on the right- 
hand side of the Equation (7.7), so that 

A1 
VslG1 

Vs2G5 

-G3 

(G 3 4- G 4 4- Gs) 

The sum of the products of the elements along the diagonals to the right is 
(Vs~G~)(G3 + G4 + Gs). The sum of the products of the elements along the 
diagonals to the left is (-Ga)(VsEG3). Therefore 

A1 = (Vs, G,)(G3 + G4 + Gs) - (-G3)(Vs2Gs) 
= (VsIGI)(G3 + G4 + Gs) + Vs2G3G5 
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Finally 

V1 = A1/A 
- - [ ( V s 1 G l l ( G  3 -Jr- a 4 "Jr- (~5) -lt- (Vs2G3G5) I / (GI  -[- G2 Jr- (~3)((~3 -]- a 4 --[- a5)  

-- (G321] 

Example 7.10 

Is~ 
Vs,( 

200 V 

Figure 7.4 

2A 

( ~ t - - ~  . Node 3 Node2 \ Is~  Is I 

, , ~ \ , L  la [ ] ~ ,L/";s___l .l.___ 4 
R1 = 4~ I2 R3 = 2f~ R5 = 5~. 

(20 ~"~) 4R4 (25 ~~) 

I 5 

Is2 

"~ Vs2 
,; 22ov 

For the circuit of Fig. 7.4 determine (1) the potential difference across the 
resistor R2, (2) the current supplied by the voltage source Vs2. 

Solution 

The nodes are identified as 1, 2, 3, 4 and 5, their respective voltages being V~, V2, 
V3, V4 and Vs. We choose node 5 to be the reference node and let V5 = 0. Also 

( V  1 - V5)  = ( V  1 - 0 )  = V 1 -- Vs1 -- 2 0 0 V  

and 

(V 4 - V 5 ) -  (V 4 - O ) =  V 4 -- V s 2 - - 2 2 0  V 

We therefore have two unknown voltages (V2 and V3) and we need two 
independent equations to solve for them. 

Applying KCL to node 2 and assuming the currents to be flowing as shown, 
we have 

11 -F /2  + I 3 - - / s - - 0  

( V  2 - V 1 ) / R  , + ( V  2 - V s ) / R  2 + ( V  2 - V 3 ) / R  3 - I s = 0 

Using conductances we have 

(V2 - V1)G1 + G2(V2  - Vs)  + G3(V2  - V3) - / s  = 0 

G,V~_- GIVs, + G=V2- G2V~ + G~V2- G~V~ = & 

(c,  + o= + Q ) v 2 -  o~v~ = (& + O, Vs,) 

Note that we could have written this equation down immediately without 



7.3 Nodal voltage analysis 153 

recourse to Kirchhoff's law by using the pattern noted in the bullet points 
leading to Equations (7.4) and (7.7) above. Thus: 

�9 the coefficient of V2 is the sum of all the conductances connected to node 2, 
i.e. (G~ + G 2 + G3); 

�9 the coefficient of V3 is ( - 1 )  times the conductance connected between 
nodes 2 and 3, i.e. (-G3);  

�9 the right-hand side of the equation is the current fed directly into the node 
from source Vs1 (G1Vs1) and source Is (Is), i.e. a total of (Is + G~Vs~). 

Putting in the numbers we have 

(1/4 + 1/20 + 1/2)V2 - (1/2)I/3 - [2 + (1/4)200] 

0.8 V 2 - 0.5 V 3 - 52 (7.8) 

For node 3" 

�9 the coefficient of ~ is the sum of all the conductances connected to node 3 
(G3 + G4 + Gs); 

�9 the coefficient of V2 is ( - 1 )  times the conductance connected between 
nodes 3 and 2 (-G3);  

�9 the right-hand side of the equation is the total current fed directly into the 
node from the voltage source Vs2 (GsVs2) and the current source Is ( - I s )  
negative because the current is flowing away from the node. 

Thus we have 

(G3 + G4 -+- G5)V3- G3V2- (G5Vs2- Is) 

Putting in the values we have 

(1/2 + 1/25 + 1//5)V3- (1 /2 )V2-  ( 1 / 5 ) 2 2 0 -  2 

0.74 V 3 -  0.5 V 2 -  42 (7.9) 

In matrix form Equations (7.8) and (7.9) become 

[ 0 . 8  --0.5 ][  g2] = 152] (7.10) 
-0.5 0.74 1/'3 42 

Using Cramer's rule to solve for V2, 

V 2 -  AI/A 

0.8 -0 .5  
A =  

-0.5  0.74 

= (0.8 X 0.74) - ( -0 .5  x -0.5)  - 0 . 5 9 2 -  0.25 = 0.342 
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To determine A~, we replace column 1 by the column vector on the right-hand 
side of Equation (7.10). Thus 

52 -O.5 
m 1 --- 

42 0.74 

= (52 • 0.74) - ( -0 .5  • 42) = 38.48 + 21 = 59.48 

Therefore 

V2- 59.48//0.342- 173.9 V 

The potential difference across R2 is 

V 2 -  V5 = 1 7 3 . 9 -  0 -  173.9 V 

Again using Cramer 's  rule, V3 = A2/A. Now to find A2 we replace column 2 
in A with the column vector on the right-hand side of Equation (7.10). Thus 

0.8 52 
A 2 : 

-0 .5  42 

= (0.8 X 42) - (52 X -0 .5)  = 33.6 + 26 = 59.6 

Therefore 

V3 = 59.6/0.342 = 174.3 V 

The current supplied by the voltage source Vs2 is given by 

Is2 = ( V 4 -  V3)/R5 
- -  ( V s 2 -  V 3 ) / R  5 

= ( 2 2 0 -  174.3)/5 
= 9.14 A 

Application to reactive a.c. circuits 

The examples shown so far have been of purely resistive circuits. For a.c. 
circuits containing reactance the method applies equally but we must use 

complex impedances. 

Example  7.11 

Determine  the potential differences across the admittance Y2 in the circuit of 
Fig. 7.5. Shown overleaf. 

Solution 

The nodes are identified as 1, 2, 3, and 4, their voltages being V~, V2, V3 and V4. 
Let node 4 be the reference node so that V4 = 0. Also 



vs, l (  
200V 

Figure 7.5 

1 Y1 11 2 I3 Y3 

) - ( 

4 
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I Vs2 Y1 =(-j/3)S 
210/-30V Y2 = (1/10)S 

Y3 = ( - j / 5 ) s  

V 1 -  V4-- V1 = Us1--200/_0o V 

and  

V 3 -  V4-- V3-- Us 2 - -210/_-30o V 

W e  t h e r e f o r e  n e e d  one  e q u a t i o n  in o r d e r  to d e t e r m i n e  the  one  u n k n o w n  

vol tage,  V2. A p p l y i n g  K C L  to n o d e  2 we have  

I1+I2+I3=0 

YI(V2- Vl) "+- Y 2 ( V 2 -  V4) "[- Y3(V2- V3)= 0 

FlU2-  FlUs1 + Y2 V2 + Y~ V2 - Y~ U~2 = 0 

(Y1 -[- Y2 -[- Y3)U2- Y1Usi -[- Y3Us2 

V 2 -  (YiVsi + Y3Vs2)/(Y1 + Y2 + Y3) 

Now 

Yi - l / j 3  - 1 / (3 /_90  ~ - 0 . 3 3 / _ - 9 0 ~  S 

T h e r e f o r e  

YIVsl = 0 . 3 3 / - - 9 0  ~ • 200 / -0  ~ = 6 6 . 7 / - - 9 0  ~ A = (0 - j66.7) A 

Also  

V 3 "-- l / j 5 - -  1/5/__90 ~  0 .2/_--90~ S 

T h e r e f o r e  

Y3Vs2 = 0 . 2 / - 9 0  ~ x 2 1 0 / - 3 0  ~ = 4 2 / - 1 2 0  ~ = ( - 2 1  - j 3 6 . 3 )  A 

Thus  

Y~Vsl + Y3Vs2 = ( - 2 1  - j 1 0 3 )  A = 1 0 5 . 1 / - 1 0 1 . 5  ~ A 

Also  we have  

Y , + Y 2 + ~  

Thus  

= ( l / j 3 )  + (1 /10)  + ( l / j 5 )  = - j 0 . 3 3  + 0.1 - j 0 . 2  

-- (0.1 - j 0 . 5 3 )  S = 0.539/__-79.3 S 
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V2 = 105/--101.5~ ~  194.8/--22.2 ~ 

The potential difference across the admittance Yz is 

1/2 - V4 = V2 = 194.8/_ - 22.2 ~ V. 

Supernodes 
If the voltage source Vs is connected between a node N and the reference node, 

the voltage of node N becomes Vs as we have seen in the previous two 

examples. If, however, the voltage source is connected between two nodes 

neither of which is the reference, we introduce the notion of a supernode. 

Figure 7.6 

Vsl ~ 1  _ I1 2 R3 I3 3 

I 
r h  ! R~ Vs2 

4 

In the circuit of Fig. 7.6 the nodes 1 and 2 and the voltage source Vsl together 

form a supernode. Two other nodes are identified as 3 and 4. We choose node 4 
as the reference and its voltage is V4 = 0. Applying KCL to the supernode we 

have 

11+12+[3=0 

(V1-  V4)/R1 + (V2-  V4)/R2 + (V2-  V3)/R3 = 0 

Now (V3 - V4) = V3 -- Vs2 so that, using conductances, we have 

G1V~ + G2V2 + G3(V2- Y~2)= 0 

But V1 = Vsl + V2, therefore 

G,(V~I + Y2) + G~V2 + G3V~- G3V~2 = 0 

G~Ys~ + G~V2 + GzV2 + G3V2- G3Vs2 = 0 

(G1 + G2 + G3)V2 = G3Vs2- G.,Vs, 
V2-  (G3Vs2- OlVs,)/(G, + G2 + G3) (7.11) 

Example 7.12 

Determine the voltage across the resistors R 2 and R4 in the circuit of Fig. 7.7. 
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Figure 7.7 

Vs, ) 
(5V) 

Is = 5A ,,.._ v- 

' ~  

1 12 ~2 4 Q 3 

R2 = 5fl I3 

R1 = 2s R3 = 4~ 

1. I= 
4 

R4 = 1~ 

Solution 

The voltages of the four nodes are V1, V2, V3 and V4. The reference node is node 
4 and its voltage is V4 = 0. Also 

V 1 - V4 = V l - -  Vs1-- - 5 V  

Nodes 2 and 3, together with the voltage source Vs2, constitute a supernode. 
Applying KCL to the supernode we have 

I 2 + I 3 + I 4 = I s  

( V 2 -  V~)/R2 + ( V 3 -  V4)/R4 + ( V 2 -  V4)/R3 : Is 

Using conductances and with V4 = 0 and V~ - Vs~ we have 

G z V  2 -- G2Vsl + G 4 V  3 + G 3 V  2 = I s 

(G2 + G3)V2 + G4V3 : Is + GzVs~ 

But V 3 -- Vs2 + V2, s o  

(G2 + G3)V2 + G4(Vs2 + V2) = Is + GzVs~ 

(G  2 + G 3 -~- G4)V2--  Is + G 2 V s 1 -  G4Vs2 

V2 = (Is + G z V s l -  G4Vsz)/(G2 + G3 + G4) 

Putting in the values, 

Is - 5 A ,  G2 = ( 1 / 5 )  S, G3 = ( 1 / 4 )  S, G4 = ( 1 / 1 )  S, Vsl = - 5  V and Vs2 = 2 V 

V2 = (5 - 1 - 2)/(0.2 + 0.25 + 1) : 2/1.45 : 1.38 V 

The potential difference across the resistor R 2 is 

V2 - 1/1 : 1.38 - ( - 5 )  = 6.38 V. 

The potential difference across the resistor R4 is 

V 3 -  V 4 -  (Vs2 + V2) - V4 = 2 + 1 . 3 8 -  0 = 3.38 V 
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7.4 MESH CURRENT ANALYSIS 

Whereas in the nodal voltage method of analysis we used Kirchhoff's current 
law to set up equations from which we could determine the voltages at the 
various nodes, in the mesh current method of analysis we use Kirchhoff's 
voltage law to set up equations from which the currents in the various meshes 
can be calculated. To illustrate the method we will consider the two-mesh 
circuit of Fig. 7.8. Remember  from Chapter 3 that meshes cannot have loops 
inside them so the loop containing Vs~, R1, R3 and Vs2 is not a mesh. We assign 
the mesh currents 11 and I2 to the meshes i and 2. Note that the branch currents 
/4 and 15 are, respectively, equal to the mesh currents 11 and I2, while the branch 
current 13 is 11 -- 12. 

R1 R3 

Vsl ~ Vs2 

Figure 7.8 
Applying KVL to mesh 1 and taking the clockwise direction to be positive, 

we have 

V s l -  R I I  4 --  R 2 I  3 = 0 

Vsl - R~Ia - R2(I1- I2) = 0 

(R1 + R2)I1-  R212 = Vsl (7.12) 

Applying KVL to mesh 2 and taking the clockwise direction to be positive, 
we have 

R213 - R315 - Vs2 = 0 

R 2 ( I 1 -  I2) - R312 - Vs2 -- 0 

R z I  1 - R z I  2 - R 3 I  2 - -  Vs2--0 

- R 2 1 1  + (R2 + R3)I2 = -Vs2  

In matrix form Equations (7.12) and (7.13) may be written 

(7.13) 

- R  2 (R2 + R3)JLI2J -Vs2_] 

Equations (7.12) and (7.13) can be solved simultaneously to determine 11 and 12. 
Alternatively, Cramer's rule can be applied to Equation (7.14). 

Let us now consider the circuit of Fig. 7.9. This is a three-mesh circuit, the 
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mesh currents being 11, 12 and 13. None of the other loops are meshes because 
they have other loops inside them. We note that the branch currents 16, 17 and 18 
are the mesh currents I~, 12 and 13, respectively. Also the branch current 14 is the 
difference of two mesh currents (I~ - I2). Similarly the branch current 15 is the 
difference of two mesh currents (12 - 13). 

Figure 7.9 

I6 R1 R3 17 R5 I8 

' I 5  

",01 
Applying KVL to mesh 1: 

Vs] - RII1 - R214 = 0 

Vs1 - -  R~I1 - n2(I1 - / 2 )  = 0 
V s l -  Rail - R z I l  + R212 = 0 

(R  1 + R 2 ) 1 1 -  R212 = Vs1 

Applying KVL to mesh 2: 

R214-  R312-  R4~ = 0 

R2(I] - 12) - R312 - R 4 ( I 2  - 13) = 0 
R z I 1 -  R212-  R312-  R412 + R 4 1 3 - 0  

-R2I]  + (R2 + R3 + R 4 ) I 2 -  R413 = 0 

Applying KVL to mesh 3: 

R415 - R fl3 - Vs2 = 0 

R 4 ( I  2 - 13) - Rs/3 - Vs2 = 0 

R412-  (R4 + Rs)~ = Vs2 

Multiplying throughout  by - 1  we have 

- R 4 I  2 + (R 4 + R s ) I  3 = _ V s 2  

In matrix form Equations (7.15), (7.1.6) and (7.17) may be written 

- R  2 (R 2 + R 3 + R4) - R 4  12 - 

0 - R  4 (R 4 + L-* 2A 

(7.15) 

(7.16) 

(7.17) 

Equations (7.15), (7.16) and (7.17) can be solved simultaneously to determine 

(7.18) 
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the three mesh currents or Cramer's rule can be used to solve the matrix 
equation (7.18). 

We note from Equations (7.15), (7.16) and (7.17) that to form a particular 
mesh equation we: 

1 multiply that mesh current by the sum of all the resistances around that 
mesh; 

2 subtract the product of each adjacent mesh current and the resistance 
common to both meshes; 

3 equate this to the voltage in the mesh, the sign being positive if the voltage 
source acts in the same direction as the mesh current and negative 
otherwise. 

Example 7.13 

For the circuit of Fig. 7.10 write down the three mesh equations from which the 
mesh currents 11, 12 and 13 could be determined. 

Figure 7.10 

R1 R3 R5 
i iii r - - q  l I 

@ 
t 0 

Vs2 

Vs3 

Solution 

To set up the mesh equations we follow the three steps outlined above. 
For mesh 1 

1 The coefficient of I1 is the sum of the resistances around the mesh 
(=R~ + R2). We therefore have (R~ + R2)ll on the left-hand side of the 
equation. 

2 There is one adjacent mesh whose current is I2. The coefficient of I2 is 
minus the resistance common to meshes 1 and 2 (i.e. -R2) .  We thus have 
-R212 on the left-hand side. 

3 The right-hand side of the equation is Vs~, positive, as the source acts in the 
same direction as the mesh current. 

The mesh equation is therefore 

(R1 + R2)I1- R212 = Vsl (7.19) 
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For mesh 2 

1 The coefficient of the mesh current is the sum of the resistances around the 
mesh (=R2 + R3 + R4). We therefore have (R2 + R3 + R4)I2 on the left- 
hand side of the equation. 

2 There are two adjacent meshes (1 and 3). The resistance common to meshes 
2 and 1 is R2 and the resistance common to meshes 2 and 3 is R4. We 
therefore have terms -Rfl~ and - R 4 I  3 o n  the left-hand side. 

3 There is a voltage source Vs2 acting in the same direction as the mesh 

current so § Vs2 appears on the right-hand side of the equation. 

The mesh equation is therefore 

- R 2 I  1 + (R 2 + R 3 + R3)I  2 -- R 4 ~ -  Ys2 (7.20) 

For mesh 3 

1 The total resistance around the mesh is (R4 + Rs) so we have (R4 + R5)I3 on 
the left-hand side of the equation. 

2 There is one adjacent mesh (2) and the resistance common to it and mesh 3 
is R4. We therefore have a term -R412 appearing on the left-hand side. 

3 The voltage source Vs3 acts in the opposite direction to the mesh current so 

that -Vs3 appears on the right-hand side. 

The mesh equation is therefore 

-R412 + (R4 + R5)I3 = -Vs3 

In matrix form the equations may be written 

IR+R2, RE 0 I I,l rvs1 
- R  2 (8  2 + R 3 -Jr- R4)  - R  4 12 - / V s 2  [ 

- R4 (R, + 6 L- 

(7.21) 

(7.22) 

Example 7.14 

Determine the currents supplied by the voltage sources  Vs1 and Vs2 in the 
circuit of Fig. 7.11. 

Figure  7.11 

R1 - 49~ R3 = 3D. R5 = 5s 

......................... i 1 
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Solution 

There are three meshes identified by the currents I~, I2 and 13. Applying KVL to 
mesh 1 and taking the clockwise direction to be positive, we have 

Vsl - R l I 1 -  R214 = 0 

The branch current/4 is I~ - I2, so 

Vsl - RII1 - R2(I1 - I2) = 0 
Vsl - R l l l -  R211 + R212 = 0 

(R1 + R2)I~ - R212 = Vsl (7.23) 

Note that we could have written down this equation immediately using the 
three steps outlined above. 

For mesh 2, which has two adjacent meshes, steps (1) and (2) give 
( R  2 + R 3 4- R 4 ) I  2 - R21~ - R413 for the left-hand side of the equation. There is 
no voltage source in this mesh so the right-hand side is simply zero. The mesh 
equation is therefore 

-R211 + (R2 + R3 + R4)I2-  R413 = 0 (7.24) 

For mesh 3, which has only one adjacent mesh, the left-hand side of the 
equation is 

-R412 + (R4 + R5)/3 

The voltage source is acting in the opposite direction to the mesh current so the 
right-hand side of the equation is -Vs2. The mesh equation is therefore 

- R , I 2  + (R4 + R5)/3 = -Vs2 (7.25) 

Putting in the values for the resistances and voltages. Equations (7.23), (7.24) 
and (7.25) may be written in matrix form as 

i<4+40  40 0 i i j: 1 i 0001 - 4 0  (40 + 3 + 50) - 5 0  = 

0 - 5 0  (50 + 5) 13 - 10 

Using Cramer 's  rule I~ - A~/A,, Now 

A - 44 - 4 0  0 
- 4 0  93 - 5 0  

0 - 5 0  55 

= [(44 x 93 x 55) + ( - 4 0  x - 5 0  x 0) + (0 x - 4 0  x -50)]  
- [ ( 0  x 93 x 0) + ( - 4 0  x - 4 0  x 55) + (44 x - 5 0  x -50) ]  
= 225 060 - (88 000 + 110 000) 
= 27 060 

(7.26) 
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To find A 1 w e  replace column 1 of A by the column vector on the right-hand side 

of the matrix equation. Thus 

A 1 = 200 - 4 0  0 
0 93 - 5 0  

-210  - 5 0  55 

= [(200 X 93 X 55) + ( - 4 0  X - 5 0  X -210)  + (0 X 0 X -50)]  
- [ ( 0  X 93 X -210)  + ( - 4 0  X 0 X 55) + (200 X - 5 0  • -50)]  

= (603 000) - (500 000) 
= 103 000 

11 = 103 000/27 060 - 3.81 A. 

To find A 3 we replace the third column of A by the column vector giving 

A 3 - -  44 - 4 0  200 
- 4 0  93 0 

0 - 5 0  -210  

= [(44 X 93 X -210)  + ( - 4 0  x - 0  x 0) + (200 x - 4 0  X -50)]  

- [ ( 2 0 0  X 93 • 0) + ( - 4 0  X - 4 0  X -210)  + (44 X 0 X -50)]  
= ( - 8 5 9  320 + 400 000) - ( - 3 3 6  000) 
= - 123 320 

13 - A3//A - -123  320//27 060 - -4 .56  A 

The minus sign indicates that the current is flowing in the opposite direction to 

that shown in the circuit diagram (i.e. it is flowing out of the positive terminal of 

the voltage source). 

Circuits containing voltage and current sources 

If the current source is located in one mesh only, then that mesh current is the 
source current and the analysis is quite straightforward, as shown by the 
following example. 

Example 7.15 

Determine the current through the resistor R2 in the circuit of Fig. 7.12. 

Figure 7.12 

,s: 1A l t 

R1 = 3 ~  R3 = 1 
l , t I t - - - -  

R2 2f l  

t,3 
O Vs 

J 
6V 
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Solution 

There  are two meshes  whose  currents  are I~ and 12, respectively,  and we note  

that  the mesh  current  I~ is equal  to the cur ren t  source Is. Apply ing  K V L  to 
mesh  2 and taking the ant iclockwise direct ion to be positive, we have 

V s + R3I 2 + R2I 3 - 0  

Since 13 = 12 - 11 then 

V s + R 3 I  2 + R2I 2 - R 2 I  1 = 0  
+ R I,- 

= R z l s -  Vs 

12 : ( R 2 / s -  Vs)/(R2 + R3) 

Put t ing  in the values we have 

12 - [(2 • 1) - 6) ] / (2  + 1) - ( - 4 / 3 )  A 

The  cur ren t  th rough  the resistor  R2 is 

13 - I2 - 1 1 -  I2 - I s -  ( - 4 / 3 )  - 1 - -7 / /3  - - 2 . 3 3  A 

The  negat ive  sign indicates that  the cur ren t  is flowing in the opposi te  direct ion 
to that  shown in the circuit d iagram (i.e. it flows downwards  th rough  the 

resistor) .  

Supermeshes 
We saw that  in nodal  vol tage analysis two nodes  having a vol tage source 

connec ted  be tween  them const i tute  a supernode .  In mesh  current  analysis two 
meshes  which have a cur rent  source c o m m o n  to both  of them form what  is 

known  as a supermesh .  As an example ,  consider  the circuit of Fig. 7.13 which 

has three  meshes  identified by the currents  I1, 12 and 13. Meshes  2 and 3 have a 

c o m m o n  cur ren t  source Is and toge the r  they const i tute  a supermesh .  

Figure 7.13 
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Applying KVL to mesh 1 and taking the clockwise direction to be positive, we 
have 

V -  R1/4-  R4/5 = 0 

The branch current/4 is Ix - I2 and the branch current 15 is 11 - -  13. Therefore 

V -  R ~ ( I  1 - I2) - R 4 ( I 1 -  13) = 0 

V -  RlI1  + R l I2  - R411 + R413 = 0 

Rearranging, 

(R1 + R4)I1-  R l I 2 -  R413 = V (7.27) 

Note again that: 

1 the mesh current is multiplied by the sum of the resistances around the 
mesh; 

2 there are two adjacent meshes and for each of these we subtract the product 
of the mesh current and the resistance common to it and mesh 1; 

3 the right-hand side of the equation is the voltage source in the mesh and is 
positive because it acts in the same direction as the mesh current. 

Applying KVL to the supermesh and taking the clockwise direction to be 
positive, we have 

R l 1 4  - R212 - R313 + R415 = 0 

R~(I~ - 12) - R 2 I  2 - R 3 I  3 + R4(I1 - ~ )  = 0 

R~I~ - R l I2  - R212 - R313 + R4I~ - R413 = 0 

(R1 + R4)I~ - (R1 + R2)I2 - (R3 + R4)13 = 0 

Multiplying throughout by - 1  and rearranging, 

(R1 -Jr- R2)I2 + (R3 + R 4 ) h  - (R1 -t- R4)I1 -- 0 (7.28) 

Note that in this case: 

1 the supermesh current I2 is multiplied by the total resistance through which 
it flows and the supermesh current 13 is multiplied by the total resistance 
through which it flows and these products are added; 

2 there is one adjacent mesh and its current is multiplied by the total 
resistance through which it flows and this product is subtracted; 

3 there is no voltage source in the supermesh, so that the right-hand side of 
the equation is zero. 

The ' three-step' method could thus have been used to write down Equations 
(7.27) and (7.28) immediately without recourse to Kirchhoff's voltage law. We 
see that the current in the branch common to meshes 2 and 3 is Is (=I3 - 12), 
so  
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(7.29) /3 = Is + 12 

Substituting for ~ from Equation (7.29) in Equation (7.27) we have 

(R1 + R4) /1 -  R l I 2 -  R4(Is + I2) = V 
(R, + R4)I 1 - R l I  2 - R 4 I  s - R412 = V 

(R1 + R4)I 1 - ( R  1 4- R4)I 2 = V 4- R 4 I  s (7.30) 

Substituting for 13 from Equation (7.29) in Equation (7.28) we have 

(R, + R2)I2 + (R3 + R4)(Is + 12) - (R, + R4)I1 = 0 
(R1 + R2)I2 + R3Is + R312 + R4Is + R412- (R~ + R4)I~ = 0 

(R1 + R2 + R3 + R4)I2-  (R1 + R4)I1 = - (R3 + R4)Is (7.31) 

We now have two equations (7.30) and (7.31) from which I~ and 12 can be 
determined. Once 12 is known 13 follows immediately from Equation (7.29). 

Example 7.16 

Determine (1) the mesh current I2 and (2) the voltage at node X in the circuit of 
Fig. 7.14. 

R1 = 6D. 

F igure  7 .14  

@ 
Vsl = 12V 

X R3 = 15~ 
i 

R2 3~ Vs2 = 3V 

Solution 

There are three meshes in total but since there is a current source common to 
meshes 1 and 2, these can be considered to be a supermesh. Applying the three- 
step method to the supermesh: 

1 we multiply the mesh current 11 by the resistance through which it flows 
(R~) and add this to the product of the mesh current I2 and the resistance 
through which it flows (R2); 

2 there is one adjacent mesh whose current is 13. We multiply this by the 
resistance (R2) common to the two meshes and subtract the product; 

3 there is a voltage source (Vsl) which acts in the opposite direction to the 
mesh current flowing through it so the right-hand side of the supermesh 

equation is - Vs~ 
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The supermesh equation is therefore 

RlI  1 + R212 - R213 = _Vsl  

Now I 1 - -  I 2 = Is ~ 11 = Is + 12, so 

Rl(Is + 12) + R212- R213 = - V s ,  

Putting in the values, 

6(5 + 12) + 312-  313 = - 1 2  
912-  313 = - 4 2  

Dividing through by 3 we get 

312-  13 = - 1 4  (7.32) 

For mesh 3: 

1 we multiply the mesh current by the resistance through which it flows 

(R 2 + R3); 

2 there is one adjacent mesh whose current (I2) is multiplied by the resistance 
common to both meshes (R2); 

3 the voltage source Vs2 acts in the opposite direction to the current in the 
mesh so the right-hand side of the mesh equation is -Vs2. 

The mesh equation is therefore 

(R2 + R3)I3-  R212 = -Vs2 

Putting in the numbers and rearranging we have 

-312 + 1813 = - 3  (7.33) 

Adding Equations (7.32) and (7.33) we have 

1 7 1 3 = - 1 7  and 1 3 = - 1 A  

The minus sign indicates that the mesh current 13 flows in the opposite direction 
to that shown in the diagram (i.e. anticlockwise rather than clockwise). 

(1) To find the mesh current 12 
Substituting for 13 = - 1  A in Equation (7.32) we have 312-  ( - 1 ) = - 1 4  

and 

12 = - 1 5 / 3  = - 5  A 

Again the minus sign indicates that the mesh current 12 flows in an anticlock- 
wise direction around the mesh. 

(2) To find the voltage at node X 
The voltage at node X is given by 

Vx = Vs2 + 13R3 = 3 + ( - 1 )  • 15 = 3 -  15 = - 1 2 V  
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7.5 SELF-ASSESSMENT TEST 

1 Define a matrix. 

2 Explain what is meant by a column matrix. 

3 Write down the row matrix having elements 1, 7, 9, and 81. 

4 Express in double subscript form the element located in the third row and 
the fourth column of a matrix A. 

5 For the matrices A and B state whether A + B = B + A. 

6 For the matrices A and B state whether A B  = BA.  

7 Define the minor of an element of a matrix. 

8 Define the cofactor of an element of a matrix. 

9 Define the determinant of a matrix. 

10 State Cramer's rule. 

11 Outline the method of nodal voltage analysis of electric circuits. 

12 What determines the choice of the reference node in nodal voltage 
analysis? 

13 Define a supernode. 

14 Outline the method of mesh current analysis of electric circuits. 

15 Define a supermesh. 

7.6 PROBLEMS 

1 For matrix A - and matrix B - determine (a) A + B, 
m 1 

(b) A - B, (c) A S ,  (d) BA.  

2 Write out the following set of linear equations in the matrix form A X  - B :  

(a) 2 x - 3 y = l  
x + 5 y = 7  

(b) x +  y + 3 z = 7  
x - 2 y +  z = 6  

- 4 y - 3 z  =4 .  

3 Find the linear equations represented by the following matrix equations 

(a) [~ 53][~] = [2176] 



(b) Ii1.1 -101 -51 -31 Xlyl - I6~1 
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4 Find the determinant ~ the matrix I34 58] 

5 Evaluate the determinant of the matrix 

A Ii 
6 Write down and evaluate the minor of the element a2~ of the matrix A in 

Problem 5. 

7 Write down and evaluate the cofactor of the element a32 of the matrix A in 
Problem 5. 

NB" Each of the following problems should be solved using (a) nodal 
voltage analysis and (b) mesh current analysis even though in some cases 
other methods might be more appropriate. 

8 Determine the value of the current 1 through the 1 f~ resistor in the circuit 
of Fig. 7.15. 

2s 3~ 
! 1 i I 

Figure 7.15 

10v~ E] ,~ c 
t' 

5V 

9 Calculate the value of the current flowing in the resistor R ( -  30 f~) in the 
circuit of Fig. 7.16 

,sA t 
L 

Figure 7.16 

1~ 6~ 
i ! -  . . . . .  - - - !  ! 

--J 2~ R ['-~30~ 12~[~ 18V 
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10 Obtain the value of the current flowing through resistor R ( -  1 ~) in the 
circuit of Fig. 7.17 

 ov( 

5f~ R= l f l  
! 

" , I ! 

1-14o T 5A 

Figure 7.17 

11 Find the value of the current I flowing through the 40 fl resistor in the 
circuit of Fig. 7.18. 

Figure 7.18 

2O 

o ; 
2V 

12 Calculate (a) the loop currents I~,/2 and 13 and (b) the total power 
consumed in the circuit of Fig. 7.19. 

Figure 7.19 

4f~ t - . . 6 V  1s lf~ 
! i 

10V 

J 
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13 Determine the current I supplied by the voltage source in the circuit of 
Fig. 7.20. 

5~ 20mH 10~ 
-- I  F - - - - " ~ " ~ ' ~  ~ - - !  I 

Figure 7.20 

I - - I  
IOD. 

[~ 20s 

100t1F 
i I I I i i 

20~ 
! 
[ 

0 
200 V, 50 Hz 

50mH 



8 Transient analysis 

8.1 INTRODUCTION 

We saw in Chapter 2 that the potential difference across a capacitor cannot 
change instantaneously (Equation 2.26) and that the current through an 
inductor cannot change suddenly (Equation 2.35). If, therefore, when a circuit 
containing capacitance or/and inductance is operating in the steady state and 
conditions change for some reason, requiring the current and voltage values to 
change, there will be a finite period of time during which these changes take 
place. This period is called a period of transient operation. 

Two obvious examples of transient operation are (1) when a circuit contain- 
ing capacitance or inductance is initially switched on and (2) when such a 
circuit, having been operating in the steady state for some time, is suddenly 
switched off. 

These transient conditions are associated with the changes in the energy 
stored in the capacitor or the inductor, and circuits containing either of these 
elements are called single energy circuits. Circuits containing both of these 
elements are called double energy circuits. Because there is no energy stored in 
purely resistive circuits, currents and voltages in such circuits are able to change 
without periods of transient operation (i.e. instantaneously). 

8.2 CIRCUITS CONTAINING RESISTANCE AND 
INDUCTANCE 

The sudden application of a step voltage 

The series RL circuit shown overleaf in Fig. 8.1 is connected to a d.c. voltage 
source V such that when the switch S is closed (at an instant t = 0 say) a voltage 
V is suddenly applied to the circuit. This is called a step function and is shown in 
Fig. 8 2. For this step function, 

V( t )  = O f o r t < 0  

V( t )  = V fo r t ->0  
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Figure 8.1 Figure 8.2 
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Applying K V L  to the circuit we see that 

V -  VR- VL~-O 

where 

VL = L(di/dt) 

and 

VR = in 

so that 

V -  iR - L(di/dt) = 0 (8.1) 

Rearranging,  we get 

di/dt = ( V -  iR) /L  - [ ( V / R ) -  i] / (L/R)  

Separat ing the variables di and dt we have 

di/[(V/R) - i] = R dt /L 

Integrating, and remember ing  that f ( d x / x ) -  ln x + a constant,  and that 

f dx = x + a constant,  we have 

- l n [ ( V / R -  i] = (R/L) t  + C 

where C is a constant.  Therefore  

l n [ ( V / R ) -  i] = - ( R / L ) t -  C 

Taking antilogs we get 

(V/R)  - i - exp [ ( - R / L ) t  - C] = exp ( - R t / L )  exp ( - C )  

Now at t = O, i = 0 so that exp ( - C )  = V/R. Therefore  

(V/R)  - i=  exp ( - R t / L )  x V /R  
i -  V /R  - ( V / R ) e x p  ( - R t / L )  

= (V/R)[1 - exp ( - R t / L ) ]  

(V/R)  is the value reached by the current  when all transients have died away, 
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i.e. it is the steady state value (I) of the current, so we have finally 

i = 111 - exp (-Rt/L)] (8.2) 

The time constant of  an RL circuit 

From Equation (8.2) we note that when t = L/R seconds, 

i =  111 - exp ( -1 ) ]  - 0.632 1 (8.3) 

L/R is called the time constant of the circuit. Its symbol is ~-and it is measured 

in seconds: 

~"- L/R (8.4) 

From Equation (8.3) we see that after a time equal to the time constant 
following the sudden application of a step function, the current will have 
reached 63.2 per cent of its steady state value. After a time equal to five time 

constants (5r) the current will have reached [1 - exp ( -5 ) ]  - 0.993 or 99.3 per 
cent of its steady state value. Since mathematically the current can never reach 
I we say that to all intents and purposes it has done so after 5~-. 

The voltage across the resistor is VR = iR = I [ 1 -  exp (-Rt/L)]R and, 
since IR = V, 

V R = V I I  - exp (-Rt/L)] (8.5) 

The voltage across the inductor is vL = V -  VR = V -  V[1 - exp (-Rt/L)], so 

VL = V exp (-Rt/L) (8.6) 

Equation (8.2) describes an exponential growth of current, Equation (8.5) 
describes an exponential growth of voltage and Equation (8.6) describes an 
exponential decay of voltage. The graphs of these are shown in Figs 8.3 and 
8.4. 
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The rate of change of current is obtained by differentiating Equation (8.2). 
Thus, remembering that I = V/R 

di/dt = (V/R)(R/L) exp (-Rt/L) 
= (V/L)  exp (-Rt/L) (8.7) 
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At t = 0, the rate of change of current is V/L  amperes per second and if the 

current maintained this rate of growth for a time equal to the time constant of 

the circuit it would reach 

(V/L)  x "r = (V/L)  • (L /R)  
- V/R amperes 

This is its final steady state value I. 

Example 8.1 

A d.c. voltage of 200 V is suddenly applied to a circuit consisting of a resistor of 

20 lI resistance in series with an inductor having an inductance of 0.5 H. 

Determine (1) the time constant of the circuit, (2) the final steady state value of 

the current, (3) the value of the current after a time equal to three time 
constants. 

Solution 

1 From Equation (8.4) the time constant is given by 

L / R  - 0.5/20 - 0.025 s - 25 ms 

2 The final (steady state) value of the current is given by 

I = V / R -  2 0 0 / 2 0 -  10 A 

3 The time equivalent to 3~" is 3 x 25 - 75 ms. From Equation (8.2) 
i = I[1 - exp ( - R t / L ) ] .  

With I = 10 A, R - 20 11, L - 0.5 H and t - 0.075 s, we obtain 

i3~.- 10[1 - exp ( - 2 0  x 0.075/0.5)] = 9.5 A 

Example 8.2 

A resistor having a resistance of 2 11 is connected in series with an inductor of 
20 H inductance. A step voltage is suddenly applied to the series combination 
and the initial rate of rise of current is 4 A/s.  Determine (1) the time constant 
of the circuit, (2) the magnitude of the applied voltage. 

Solution 

The circuit is as shown in Figure 8.1 with R - 2 11 and L - 20 H. 

1 From Equation (8.4) the time constant is given by ~"- L / R  - 20/2 = 10 s. 

2 From Equation (8.7) with t = 0 we see that the initial rate of rise of current 
is given by V/L.  It follows that V = (initial rate of rise of c u r r e n t ) x  L 
= 4 x 2 0 - 8 0 V .  
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The sudden disconnection of a d.c. supply 
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Figure 8.5 
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Suppose that the circuit of Fig. 8.5(a) has been in steady state operation for a 
long time ('long' here means long compared to the time constant of the circuit), 

when the switch S~ is suddenly opened and $2 is simultaneously closed. Let this 
instant be t = 0 and at this instant the current will have its steady state value (I). 

The circuit then becomes that of Fig. 8.5(b). 
Applying KVL to the closed circuit we have 

iR + Ldi/dt  = 0 
iR - - L d i / d t  

Separating the variables di and dt, 

(R /L)  dt = - (d i / i )  
f (R /L)  dt = - f  (1 /0  di 

Integrating gives 

Rt//L = - In i + C (8.8) 

where C is a constant. Now at the instant t = 0, i = I and so 0 = - I n  I + C, so 

C =  l n I  

Substituting for C in Equat ion (8.8) 

Rt /L  - - l n  i + In I = In I/i  

Taking antilogs, we have exp (Rt /L)  - I/i  so t h a t / =  I /exp  (Rt/L).  Finally 

i = I exp ( -Rt / /L)  (8.9) 

The potential difference across the resistor is given by VR = iR 
= I exp ( - R t / L ) R .  
Since IR = V, then 

VR = V exp ( - R t / L ) .  (8.10) 

The voltage across the inductor is vL - --VR -- --V exp ( - R t / L ) ,  so 

vL = - V  exp ( - R t / L )  (8.11) 
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Equation (8.9) represents an exponential decay of current, Equat ion (8.10) 
represents an exponential decay of voltage and Equation (8.11) describes an 
exponential  rise of voltage starting from - V  and aiming towards zero. These 
are illustrated in Fig. 8.6(a) and (b). 
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Example 8.3 

A circuit consisting of a resistor having a resistance of 2 1~ in series with an 
inductor whose inductance is 10 H is fed from a 12 V d.c. supply. Thirty seconds 
after the circuit has been switched on a fault causes the supply to become short 

circuited. Determine the current in the circuit 2.5 s after the occurrence of the 

fault. 

Solution 

i 20- 1OH i 2D. 1OH 
A >-~'---! i ,,-Y~r-v-~____ A )__~__ I I 

v() 

B B 

Figure 8.7 
(a) (b) 

Fig. 8.7(a) shows the circuit before the fault occurs and Fig. 8.7(b) shows the 
circuit after the fault. The time constant of the circuit is given by 
~"- L/R - 10,/2 - 5 s. After  30 s (which is 6 ~-) therefore, the current will have 
reached its steady state value: 

I -  WR -12 /2  = 6 A 

When the fault occurs I = 6 A and 2.5 s later 

i - I exp ( -R t /L)  - 6 exp ( - 2  x 2.5,/10) - 3.64 A 
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The response to the application of a pulse 

Suppose that the pulse of width T seconds (T >i 5r) shown in Fig. 8.8 is applied 
to the circuit of Fig. 8.1. The effect upon the circuit can be considered to be a 
combination of the conditions in the previous two sections. 

0 T "-t 
Figure 8.8 

For the period from 0 to T seconds, the current in the circuit and the voltages 
across the resistor and the inductor will be given by Equations (8.2), (8.5) and 
(8.6), respectively, while for the period following T, these quantities are given 
by Equations (8.9), (8.10) and (8.11), respectively. The corresponding wave- 
form of current may be obtained by combining Fig. 8.3 with Fig. 8.6(a), putting 
0 >I 5z in the latter. Those of VR and Ve can be obtained by combining Fig. 8.4 
with Fig. 8.6(b), again changing the origin of the latter to 5z. When you have 
done this you should obtain graphs similar to those of Figs 8.10 and 8.12. 

The RL integrator circuit 

If the output voltage of the RL circuit shown in Fig. 8.9 is taken to be the 
voltage across the resistor, then the circuit is called an integrator because the 
output waveform approximates to the integral of the input voltage. 

vC) 

i L _~,..j,-,~ryy~ 

F "]R 

0 

Vo -- 

0 

VR 

Figure 8.9 

Example 8.4 

A pulse of magnitude 5 V and width 40 txs is applied to an integrator circuit 
consisting of an inductor of 8 mH in series with a resistor of 2 kf~. Draw the 
waveforms of the output voltage, Vo, and the current, i. 

Solution 

The circuit is as shown in Fig. 8.9 with R - 2 kl), L - 8 mH and V = 5 V. First 
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consider the period 0 -T  (0-40 Ixs). The time constant of the circuit is 

z = L/R = 8 • 10-3fl2 • 10 3 = 4 x lO-6s = 4 Ixs 

Now 5~- = 20 ixs and since the pulse width is twice as long as this the steady state 
conditions will have been reached well before the pulse is removed. 

The steady state value of the current is V/R = 5//2 x 103= 
2.5 X 10 -3 A = 2.5 mA and this is considered to have been reached in 20 Ixs. 
The instantaneous value of the current is given by Equation (8.2) to be 

i =  I [ 1 -  exp (-Rt/L)]. After the time constant (4 ~s) the current will have 
reached 0.632 1 = 0.632 x 2.5 x 10 -3 A --- 1.58 mA. The output voltage is given 

by Equation (8.5) to be Vo = VR = V[1 - exp (-Rt/L)] and after 4 I~s this will 
also have reached 63.2 per cent of the steady state value (5 V). The output 
voltage will then be 0.632 x 5 = 3.16 V. 

Next we consider the period subsequent to the removal of the pulse (i.e. after 
40 Ixs). During this period the current will be decaying in accordance with 
Equation (8.9) while the output voltage is also decaying according to Equation 
(8.10). After 5~" = 20 txs (i.e. a total of 60 I~s after t = 0), both will have 
died away to zero. After r = 4 Ixs (44 Ixs after t = 0) the current will have 

reached I exp ( - 1 )  so that i = 0.368 1 = 0.368 x 2.5 = 0.92 mA. Similarly 

Vo = VR = 0.368 V = 0.368 X 5 = 1.84 V. 
The graphs of current and output voltage are now drawn as shown in 

Fig. 8.10. 
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The RL differentiator circuit 

If the output voltage is taken to be that across the inductor as shown in Fig. 8.11 
the circuit is called a differentiator because the output voltage waveform 

approximates to the differential of the input voltage waveform. 

Figure 8.11 
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Example 8.5 

Derive the waveforms of the current and the output voltage for the differ- 

entiator circuit given in Fig. 8.11 when R = 2 kIl, L = 8 mH and the input 

voltage pulse is 5 V in magnitude with a width of 40 I~S. 

Solution 

This is the same circuit as that of the previous example simply reconfigured to 

make VL the output voltage. The time constant of the circuit is therefore the 

same as before at 4 Ixs, 
The pulse width is ten times the time constant of the circuit so that, following 

the application of the pulse, the current and both element voltages will reach 

their final steady state values well before it is subsequently removed. 
Consider the period 0-40 IXS. The current waveform is identical to that 

derived for the previous example. The output  voltage Vo is now the voltage 

across the inductor VL and this is given by Equat ion (8.6) as 

V L " -  V exp (-Rt/L) 

After t = z(4 txs) 

vL = 5 exp ( - 1 )  = 0.368 • 5 = 1.84 V 

After t = 5z(20 ~s) 

VL~-V=5V 

Consider now the period following the removal of the pulse, i.e. after 40 Ixs. 
Again the current waveform is the same as that obtained in Example 8.4. The 
output  voltage is given by Equat ion (8.11) to be vL = - V  exp (-Rt'/L) where 

t' = ( t -  40) IXS. 

At t = 40 txs, t' = 0 and VL = --V exp (0) = - V  
At t = 44 txs, t' = 4 Ixs and vL = - V  exp ( - 1 )  = -0 .368 • 5 = 1.84 V 

At t = 60 txs, t' = 20 IXS and VL = --V exp ( - 5 )  = 0 

The waveforms of current and output  voltage may now be drawn as in 

Fig. 8.12. 
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8.3 C I R C U I T S  C O N T A I N I N G  R E S I S T A N C E  A N D  
C A P A C I T A N C E  

The sudden application of a step voltage 

Let the step function shown in Fig. 8.2 be applied to the circuit of Fig. 8.13. 
Applying KVL we see that 

V = VR + VC (8.12) 

v( 

Figure 8.13 
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Now VR = iR and from Equation (2.1), Chapter 2, i =  dq/dt where i is the 
current through the capacitor and q is its charge at any instant. Also, from 
Equation (2.18), q = Cvc where C is the capacitance of the capacitor and Vc is 
the potential difference between its plates at any instant, so that i -  Cdvc/dt. 
Therefore VR = iR = RCdvc/dt and Equation (8.12) becomes 

V = RCdvc/dt + vc (8.13) 

Rearranging, we have 

V -  Vc = RCdvc/dt 

Separating the variables, 

d v c / ( V -  V c ) -  dt/(RC) 

Integrating we get 

In ( V -  Vc) = t//(RC) + C 

where C is the constant of integration. Taking antilogs we have 

V -  V c -  exp [(- t /RC) + C] 
= exp ( - t /RC)  exp (C) 

When t = 0, Vc = 0 and so exp (C) = V. Therefore 

V - v c - V e x p ( - t / R C )  and v c - V - V e x p ( - t / R C )  

Finally 

Vc = V[1 - exp (-t /RC)] (8.14) 
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This describes an exponential growth of voltage and is shown in Fig. 8.14. 
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0 T 5T "-t  

Figure 8.14 

The time constant of an RC circuit 

The product  RC is called the time constant (symbol z) of the RC circuit and it is 
measured in seconds. When t = R C, 

Vc = V[1 - exp ( - 1 ) ]  = 0.632 V 

After  a time equal to the time constant, therefore, the voltage across the 
capacitor will have reached 63.2 per cent of its final steady state value V. 
Compare  this with the growth of current in an RL circuit when subjected to a 
step input (Equation (8.3)). 

After  a period equal to 5RC, vc = V[1 - exp ( - 5 ) ]  = 0.993 V. To all intents 
and purposes, therefore, the voltage across the capacitor will have reached its 
steady state value after 5z seconds. The capacitor is then said to be fully 
charged and there is no longer any movement  of charge to its plates. The 
current in the circuit is therefore zero and the voltage across the resistor is also 
zero. Because the voltage across the capacitor is initially zero, the whole of the 
applied voltage V appears across the resistor in accordance with KVL so V = iR 
and the current immediately jumps to the value I = V/R. Thereafter  it may be 
found from 

i=  Cdvc/ /dt-  C(d/d t ){V[I-  exp (- t /CR)]} 
= CV[O - ( - 1 / R C )  exp ( - t /RC)]  = (V/R) exp ( - t / R C )  

Finally, since V/R - I, then 

i - I exp ( - t / R C )  (8.15) 

This shows that, as the charging process proceeds, the current decays exponen- 
tially from its initial value of I (=  V/R) to zero. The waveform of the current is 
shown on the following page in Fig. 8.15. 

The voltage across the resistor, vR is given by iR - IR exp ( - t / C R )  and, since 
IR = V, then 
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Figure 8.15 
0 % 

1,' R = V exp (-t/cn) 
This describes an exponential  decay of voltage and is shown in Fig. 8.14. 

Example 8.6 

(8.16) 

In the circuit of Fig. 8.16, the switch S is closed at t = 0. Determine  the value of 
the current (is) drawn from the supply after 30 ms. 
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Figure 8.16 

Solution 

From Equat ion (8.15) the current through the branch containing C and R 2 is 
given by 

i2 = 12 exp ( - t / C R 2 )  

The time constant of this branch is 

7" = C R  2 = 2 0 0  • 10 -6 X 350 = 0 . 0 7  s 

The steady state value of the current through the branch is 

12 = V / R  2 = 100/350 = 0.286 A .  

After 30 ms, 

i2 = 0.286 exp ( -0 .03/0 .07)  - 0.186 A 

The current I~ - V/R1 = 100,/50 - 2 A and it reaches this value immediately S 
is closed because the branch is purely resistive. After 30 ms, therefore, 

is = I~ + i 2 = 2 + 0.186 = 2.186 A 
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The discharge of a capacitor 

Once the capacitor in Fig. 8.13 has been charged to V volts, it will remain at that 
voltage so long as the input voltage remains at V volts. Even if the supply is 
disconnected, as shown in Fig. 8.17(a), the capacitor (provided that it has no 
leakage resistance between its plates) will remain charged to V volts. If, 
however, the terminals A and B are now short circuited as shown in Fig. 8.17(b) 
the capacitor will begin to release its stored energy. The current will now be 
leaving its positive plate. 
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Applying KVL to the circuit of Fig. 8.17(b) we see that 

Vc - iR = 0 (8.17) 

Now i =  - ( d q / d t ) ,  the minus sign indicating that the charge on the plates is 
decaying. Since Q - C V  then q = Cvc and 

- (dq/dt)  = - C(dvc/dt )  

Substituting in Equation (8.17) we get 

v c - [ - C ( d v c / d t ) ] R  = 0 

Vc = - C R ( d v c / d t )  

Separating the variables we have dvc /vc  = - d t / C R .  Integrating gives 

In Vc + C = - t / C R  (8.18) 

where C is the constant of integration. At t -  0, Vc - V so that In V + C = 0 
and C - - l n  V. Substituting in Equation (8.18) we obtain 

In Vc - In V = - t / C R  ~ In (vc /V)  = - t / C R  

Taking antilogs 

v c / V -  exp ( - ( t / C R ) )  

Finally 

Vc = V exp ( - t / C R )  (8.19) 

The current at any instant is given by 
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i=  vc/R = ( V / R ) e x p  ( - I /CR)  

and since V/R = I then 

i = I exp ( - t / C R )  (8.20) 

The voltage across the resistor decays as the current through it decays so that 

VR = iR in magnitude. Thus 

VR = RI exp ( - t / C R )  - V exp ( - t / C R )  

Also, VR + VC = 0 SO that the voltage across the resistor is given by 

VR = --Vc = - V  exp ( - t / c n )  (8.21) 

The waveforms described by Equations (8.19), (8.20) and (8.21) are shown in 
Fig. 8.18(a), (b) and (a), respectively. Remember ,  i is discharging current. 
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Example 8.7 

A 10 ~F capacitor is charged to 150 V and then allowed to discharge through its 
own leakage resistance. After  200 s, it is observed that the voltage, measured on 
an electrostatic voltmeter, has fallen to 90 V. Calculate the leakage resistance 
of the capacitor. 

Solution 

From Equation (8.19) we have that Vc = V exp ( - t /CR) .  In this case R is the 
leakage resistance of the capacitor. The resistance of the electrostatic voltmeter 
which is in parallel with R can be taken to be infinite. Putting in the values we 
have 90 = 150 exp [-200//(10 • 10 -6 • R)], so 

-200 / (10  • 10 -6 • R) = In (90/150) 

and 

R : -200/[10.~ X 10-6X In (90/150)] : 39.15 MD, 
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Response of the RC circuit to a pulse input voltage 

Let the pulse of amplitude V and width T (>5~') shown in Fig. 8.8 be applied to 
the circuit of Fig. 8.13. From t = 0 to t = ~" the conditions are similar to those 
when a step input is applied and Equations (8.14), (8.15) and (8.16) apply. From 
t = 5~" to t = T, the capacitor is fully charged so that Vc = V, i = 0 and VR = 0. 
After the removal of the pulse at t = T the capacitor discharges and Equations 
(8.19), (8.20) and (8.21) apply. These points are illustrated in the waveforms of 
Fig. 8.19. 

I ,V 

- V  

VC 

5~ T ~ ~"~ 5~) 
Ri 

t 

Figure 8.19 

The R C integrator circuit 

If the output voltage is taken across the capacitor as shown in the circuit of 
Fig. 8.20, we have an integrator circuit, so called because the output voltage 
approximates to the integral of the input voltage. 

Figure 8.20 
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Single pulse input 
Following the application of the pulse's leading edge to the input terminals, the 
capacitor charges up in accordance with Equation (8.14) so that the capacitor 
voltage is given by 

vc = V[1 - exp (-t//CR)] 
If the pulse width T is greater than 5~" the capacitor will be fully charged before 
the pulse is removed. After the pulse is removed, the capacitor discharges in 
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accordance with Equation (8.19). The output voltage waveform is then as 
shown in Fig. 8.21. 
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Figure 8.21 

Multiple pulse input 
If a train of pulses, for which the pulse width T (>57) is equal to the pulse 
separation, is applied to the input terminals then the waveform shown in 
Fig. 8.21 will repeat. The capacitor will be fully charged before the end of each 
pulse and subsequently fully discharged before the arrival of the next pulse. 
This is shown in Fig. 8.22. 
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Figure 8.22 

Pulses for which T < 5z 
If the width of the pulse is less than five time constants then the capacitor will 
not be fully charged before the pulse is removed (i.e. Vc will be only a fraction 
of V). The smaller the pulse width, the smaller the fraction of V reached when 
the pulse is removed. However, the time constant CR remains unchanged so 
that it takes the same time for the capacitor to become fully discharged after the 
pulse is removed, regardless of the pulse width. This is shown in Fig. 8.23, which 
is drawn for a pulse width T = 2z. 
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Figure 8.23 
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Example 8.8 

The integrator circuit shown in Fig. 8.20 has R = 10 kf~ and C = 0.01 txF. 
Sketch the waveform of the output voltage Vo for each of the following input 
conditions: 

1 the input signal is a single pulse of amplitude 10 V and width T = 600 Ixs; 

2 the input is a train of pulses of amplitude 10 V, width 100 Ixs and separation 

500 ~s. 

Solution 

The time constant of the circuit is given by 

-r = CR = 0.01 x 10 -6 x 10 x 103 = 100 x 10-6s 

1 The pulse width is greater than five time constants so that the capacitor 
voltage Vc will reach its steady state value of 10 V before the pulse is 
removed. It will remain at this value until the pulse is removed at 
t - 600 p~s, after which it will decay to zero as shown in Fig. 8.24. 

IOV 
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Figure 8.24 

2 The pulse width is 100 Ixs which is less than five time constants (in fact it is 
one time constant) so that the capacitor will only be partially charged 
before a pulse is removed. After  100 ~xs, 

Vo - Vc = V(1 - exp ( - t / C R )  - 10{1 - exp [-100/(0.01 x 10 x 10s)]} 

= 6.32 V 

The pulse separation is 500 Ixs which is 5~" so the capacitor will be fully 
discharged just as the next pulse in the train arrives at the input terminals. 

The waveform of Vo is given in Fig. 8.25. 
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The RC differentiator circuit 
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Figure 8.26 

If the output voltage is taken across the resistor as shown in Fig. 8.26, then the 
circuit is called a differentiator. At instant t = 0, when the leading edge of the 
pulse arrives at the input terminals AB, the voltage across the capacitor cannot 
suddenly change so the potential difference across it is zero and a voltage of + V 
appears at the output terminals. Thus Vo (=VR) = V. The capacitor then begins 
to charge in accordance with Equation (8.14) so Vc = V[1 - exp (-t /CR)].  At 
the same time the potential difference across the resistor falls exponentially in 
accordance with Equation (8.16). 

If the pulse width is greater than five time constants (5CR) then the voltage 
Vo will have reached zero before the trailing edge of the pulse arrives (i.e. 
before the pulse is removed). At this point Vin--0 SO that Vc + 12R = 0 and 
because vc = V and cannot change suddenly then VR must immediately become 
equal to - V. 

As the capacitor then begins to discharge in accordance with Equation (8.19), 
VR will rise towards zero in accordance with Equation (8.21) so that at every 
instant Vc + VR = 0. The waveforms of vc and VR (=Vo) are therefore as shown 
in Fig. 8.27. 
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Figure 8.27 

If the pulse width is less than five time constants then the capacitor will only 
be partially charged by the time the pulse is removed, so that vc will be less than 
V and VR will not have fallen to zero. The input voltage Vin is now equal to zero 
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so that Vc + V R -  0. The voltage across the resistor will therefore have to 
change immediately to -Vc at that instant. The voltage across the capacitor will 
now begin to decay to zero in accordance with Equation (8.19) and will take a 
time equivalent to five time constants to do so. In the same time the voltage 
across the resistor will rise to zero. The waveforms are thus as shown in 
Fig. 8.28, which is drawn for a pulse width T - 2z. 
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Example 8.9 

The differentiator circuit shown in Fig. 8.26 has R = 2 Mfl and C = 1.25 pF. 
Obtain the waveform of the output voltage Vo for each of the following input 
conditions: 

1 a single pulse of amplitude 10 V and width 15 ~s; 

2 a train of pulses, each of amplitude 10 V and width 5 I~S, separated by 15 ~s. 

Solution 

1 When the pulse is applied to the circuit, Vc + VR = 10 V and all of this 
appears across the resistor because the capacitor voltage cannot change 
instantaneously. The output voltage Vo therefore immediately becomes 
equal to Vin (= 10 V). The time constant of the circuit is 

z -  C R  - 1.25 • 1 0  -12 x 2 • 1 0  6 - 2.5 ~s 

The pulse width is 15 ~zs and since this is >5z then the capacitor voltage will 
have reached V (= 10 V) and the output voltage Vo (=VR) will have reached 
zero before the pulse is removed. The output voltage will remain at zero 
until the trailing edge of the pulse arrives at the input terminals. During this 
time the capacitor voltage vc = 10 V. When the pulse is removed the input 
voltage is zero and so Vc + VR = 0. The capacitor voltage cannot suddenly 
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change but the voltage across the resistor can and it changes immediately to 
- 1 0 V .  

The output voltage waveform can now be drawn as shown in Fig. 8.29. 

vo~l 

12.5 15 27.5 t(t~S) 

- 1 0  

Figure 8.29 

2 Again the output voltage will immediately jump to 10 V as the first pulse 
arrives at the input terminals, for the reason given in part (1). In this case 
the pulse width is 5 ~s which is <52 which means that the capacitor will be 
only partially charged by the time the trailing edge of any particular pulse 
arrives at the input terminals. Also the output voltage will have fallen to a 

value >0 and in fact will be given by 

Vo = V exp ( - t / C R )  - 10 exp ( -5 /2 .5 )  = 1.35 V 

At this i n s t a n t  12 i = 0 s o  t h a t  (Vc + I2R) - -  0 ~ V R --" - - V  C. B u t  

Vc = (10 - Vo) = (10 - 1.35) V = 8.65 V 

SO 

v. = Vo = -8.65 V 

The voltage across the resistor subsequently rises towards zero. Since the 
next pulse in the train arrives after 15 Izs, which is longer than five time 
constants, the output voltage becomes zero before it arrives at the input 
terminals. The waveform of Vo may now be drawn as shown in Fig. 8.30. 

vo(V) 

10 

1 . 3 5  
0 

-8.65 

1 
7.5 20 25| 

I 
i 5t 

"~ (~s) 

Figure 8.30 
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8.4 THE LAPLACE TRANSFORM 

It is a common technique to transform problems to a different form in order to 
make their solution easier, even if the resulting processes are longer. One 
example is the use of logarithms to transform the process of multiplication or 
division into the simpler one of addition or subtraction. The method is to: 

1 look up the logarithms of the numbers to be multiplied (or divided); 

2 add (or subtract) the logarithms; 

3 look up the antilogarithm of the result in order to obtain the answer to the 
original problem. 

The equations associated with the transient operation of electric circuits are 
differential equations in the time domain. A stimulus which is a function of time 
is applied to the circuit whose behaviour is then described by one or more 
differential equations. These equations then have to be solved in order to 
determine the response of the circuit to the stimulus. By means of the Laplace 
transform it is possible to convert these differential equations into algebraic 
equations involving a complex variable, s. After manipulation in order to solve 
these algebraic equations (which are easier to solve than differential equations) 
the inverse transform is found, which gives the time response to the original 
stimulus. The method, then, is to: 

1 set up the differential equations which describe the operation of the circuit; 

2 look up the table of Laplace transforms in order to convert these to 
algebraic equations; 

3 solve the algebraic equations to find the response to the circuit in terms of 
the complex variable, s; 

4 look up the table of inverse transforms to find the time response of the 
circuit to the original stimulus. 

The Laplace transform is named after Pierre-Simon Laplace, a French 
mathematician. It is written as 

L[f(t)] : F(s) (8.22) 

which is read 'the Laplace transform of the function of time f(t) is equal to a 
function of s'. It is defined as 

L[f(t)] : f f( t)  exp ( - s t )  dt (8.23) 
0 

Thus the original function f(t) is first multiplied by the exponential decay 
exp ( - s t )  and the result is integrated from zero to infinity. The value of s must 
be such that Equation (8.23) converges to zero as t ---, ~ (it almost always does 
in problems associated with electrical circuits). 
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The inverse transform is written 

f(t) = L-~[F(s)] (8.24) 

F(s) is often written as f which is read 'f bar'. 
The Laplace transforms of many different functions of time have been 

determined and tabulated. Since these tables are readily available there is no 
need to derive the required transform in any particular problem. However, a 

few are derived here in order to show the method. 

The Laplace transform of the exponential function 

If/( t)  = exp ( -a t )  then 
oo oc  

L[f(t)] = F(s) = f exp ( -a t )  exp ( - s t )  dt = f exp [ - ( s  + a)t] dt 
0 0 

= [ - 1 / ( s  + a){exp ( - ( s  + a))t}]o 

= 1/(s + a) (8.25) 

The Laplace transform of the unit step function 

If f(t) = 1 for t -> 0 and f(t) = 0 for t < 0 then 
oc  

L[f(t)] = F(s) - f 1 exp ( - s t ) d t  = - (1 / s ) [ exp  (-st)]o 
0 

- 1 I s .  (8.26) 

It follows that, for a step function of amplitude A, the Laplace transform is 
A/s .  

The Laplace transform of the derivative of a function 

The derivative of the function f(t) is d(f(t))/dt. Let this be denoted by f '(t).  
Then 

oG 

L[f'(t)] = f f ' ( t )  exp ( - s t )  dt 
0 

Integrating by parts ( fu dv = [uv] -  fv  du) we have, with u = exp ( - s t )  and 
dv = f ' ( t )  dt (so that v = f(t)), 
oo  o r  

f f ' ( t )  exp ( - s t )  dt = [exp (-st)f(t)]o - f f ( t ) { - s  exp (-st)} dt 
0 0 

The upper limit of the first term on the right-hand side must be zero in order 
that it tends to infinity as t tends to zero. Thus the right-hand side becomes 

oo 

-f(O) + sff(t) exp ( - s t )  dt 
0 

and the second term is s times the Laplace transform of the original function of 

t 

.'. L[f'(t)] = sL[f(t)] - f(O) (8.27) 
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These t ransform pairs, together  with a few other  commonly  encounte red  ones, 

are given in Table 8.1. 

Table 8.1 

f(t) Description L[f(t)] = F(s) 

1 exp ( -a t )  exponential function 1/,(s + a) 
2 1 unit step function 1/s 
3 A step function of amplitude A/s  

A 

4 d{f(t)}/dt differential of f(t) sF(s) - f(O) 
t 

5 ff(t)dt 
0 integral off(t) (1/s)F(s) + f(O)/s 

6 t ramp function 1 / s  2 
7 sin oJt sinusoidal function w/'(s 2 + w 2) 
8 cos ox cosinusoidal function s/(s 2 + w 2) 
9 exp ( - a )  sin wt exponentially decaying ~o/[(s + a) 2 + w 2] 

sinusoidal function 
10 exp ( -a t )  cos tot exponentially decaying (s Jr- O~)/[(S -[- 0~) 2 "Jr- (.0 2] 

cosinusoidal function 

Application to electrical circuit transient analysis 

For  transient  circuit analysis we convert  the original circuit into a t ransform 

circuit, and to do this we need to be able to t ransform the circuit e lements  R, L 

and C. 

Resistance 
If a resistor R has a current  flowing through it given by i = f ( t )  then the voltage 

across it will also be a function of time, given by v(t) = Ri(t).  Taking Laplace 
t ransforms we have 

L[v ( t ) ]  = RL[ i ( t ) ]  

v(s) = RI(s )  

Thus resistance is the same in the s-domain as it is in the time domain.  

Inductance 

If an inductor  L has a current  flowing through it given by i(t) then the voltage 

across it will be given by v ( t ) -  Ld i /d t .  Taking Laplace t ransforms we have, 

from number  4 in Table 8.1. 

v(s) : L s i ( s ) -  Li(O) 

If the current  is initially zero the second term on the r ight-hand side disappears  

(Li(O) : O) 
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Capacitance 
If the current is given by i(t) then the voltage across the plates will be given by 
Vc(t) = (1/C)fi dt. Taking Laplace transforms and using number 5 from the 
table we have 

vc(s) = (1/Cs)i(s) + vc(O)/s 

If the capacitor is initially uncharged then Vc(0) = 0 and the second term on the 
right-hand side disappears. 

Example 8.10 

Obtain the transform circuit for the circuit shown in Fig. 8.31 

R L C 

s v ( )  

Figure 8.31 

Solution 

The voltage source is a step function of amplitude V. From Table 8.1 we see 
that this transforms to V/s (pair number  3 with A = V). 

The resistor R in the original circuit remains unchanged in the transform 
circuit. 

The inductor L transforms to an element Ls in series with a source Li(O). 
This source is short circuited if the current is initially zero. 

The capacitor C transforms to an element 1/Cs in series with a source 
vc(O)/s. This source is short circuited if the capacitor is initially uncharged. 

The transform circuit therefore takes the form shown in Fig. 8.32. 

v 

R Ls 1/Cs 
~(s) l I ! t ~ i ! 

u(o) 

3 ()VCs,~ 

Figure 8.32 
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Transforming to the time domain from the s-domain 

From the transform circuit of Fig. 8.32 we have that 

V/s + L i ( O ) -  V c ( O ) / s -  i(s)[R + Ls + 1/Csl 
Assuming that the initial conditions are zero (i = 0 and Vc = 0) then Li(O) = 0 
and Vc(O)/s - O. Thus 

i(s) = V/s/[R + Ls + 1/Cs] 

In order to proceed from here to obtain i as a function of time we have to use 
the inverse Laplace transform table. Very often the expression for i(s) is of the 
form i(s) = M(s) /N(s)  where M(s) and N(s) are polynomials. These must be 
reduced to a series of partial fractions in order to identify a suitable transform 

pair from the table. 

Partial fractions 

By using a common denominator the expression [A/(s + 1)] + [B/(s + 2)1 can 
be written {A(s + 2) + B(s + 1)}/{(s + 1)(s + 2)}. It follows that the inverse 
process is possible so that the expression with a common denominator may be 
converted to a series of terms with separate denominators. These are called 
partial fractions. There are a number  of techniques for finding the partial 
fractions of an expression, one of which is known as 'equating coefficients'. The 
following example illustrates the method. 

Example 8.11 

Find the time response of a circuit for which the current in the transform circuit 
is given by i(s) = (V/R)(s  + 3)/[(s + 1)(s + 2)]. 

Solu t ion  

To identify suitable transform pairs we must find the partial fractions of 
(s + 3)/[(s + 1)(s + 2)] 

Let 

(s + 3)//[(s + 1)(s + 2)1 = [A//(s + 1)1 + [B/(s + 2)1 

Since 

[A/(s + 1)1 + [B/(s + 2)1 = [A(s + 2) + B(s + 1)]/[(s + 1)(s + 2)1 

then 

s + 3 - A(s  + 2) + B(s + 1) 

i.e. 

ls 1 + 3s ~  (A + B)s 1 + (2A + B)s ~ remembering that s o= 1. 
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Equating the coefficients of s 1 we have that 

I = A + B  

Equating the coefficients of s o we have that 

3 = 2 A + B  

By subtraction, A = 2; by substitution, 1 = 2 + B ~ B = - 1 .  Therefore 

i(s) = [2/(s + 1 ) ] -  [1/(s + 2)] 

From the Table 8.1 we see that the inverse transform of 2/(s + 1) is 2 exp ( - t ) .  
This is from pair number  1 with a = 1. Using the same inverse pair with a - 2 

we see that the inverse transform of 1/(s + 2) is exp ( -2 t ) .  Thus the time 
response of the circuit is given by i(t) - (V/R)[2 exp ( - t )  - exp ( - 2 0 ] .  

Example 8.12 

Obtain an expression for the current in the circuit of Fig. 8.33 following the 
closing of switch S. 

o'~ i(t)s....o__~ R L Ls 
' ~ ! I 1 

i(s) R 
I 

V 

Figure 8.33 Figure 8.34 

Solution 

The circuit equation is V = iR + Ldi/dt ,  and earlier in the chapter  we solved 
this equation for i and obtained the result shown in Equat ion (8.2). We will now 
obtain the same result using the Laplace transform method. First we obtain the 
transform circuit. 

At the instant of closing the switch S, the current is zero so that there is no 
LI(O) source and the transform circuit takes the form shown in Fig. 8.34. 

The closing of the switch is equivalent to there being a step function of 
amplitude V applied, the transform of which is V/s (pair 3 from Table 8.1 with 
A = V). From this circuit we see that 

i(s) = ( V / s ) / ( R  + Ls) = V/sIR(1 + (L/R)s)]  

Multiplying numera tor  and denominator  by R / L  we have 

i(s) = V(R//L)//s[R(1 + (L//R)s)][R//L] = V(R/L)/ /Rs[s + (R/L)]  
: (V /R){ (R /L) / [ s ( s  + (R/L)]} 
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Let 

(R/Ll/ [s + ( R / E l l  : [A/sl + + (R/L)}I  

Then 

R / L -  A[s + (R/L) ]  + Bs 

so that 

(R//L)s ~ (A + B)s + (AR//L)s ~ 

Equating the coefficients of s we have that 0 - A + B ~ B - - A .  Equating the 
coefficients of s o we have that R / L - A R / L ~ A - 1  and B - - A - - 1 .  

Thus 

(V /R) { (R/L) / [s {s  + ( R / L ) } ] } -  (V/R){[1/s]  - [1/(s + (R/L) ) ] }  
From Table 8.1 we see that 1Is is the transform of i (transform pair number 1) 
and that 1/[s + (R/L)] is the transform of exp ( - R t / L )  (transform pair 
number 1 with a = R/L).  In the time domain, therefore, the current is given by 

i(t) = (V/R){1 - exp ( -R t /L ) }  and since V/R - I, 

i(t) - 111 = exp ( -R t /L)]  

This is the same result as that obtained in Equation (8.2). 

Example 8.13 

In the circuit shown in Fig. 8.35, the capacitor is initially charged to 20 V when 
the switch is closed at an instant t = 0. Obtain an expression for the voltage (Vc) 
across the capacitor as a function of time. Hence determine the time taken for 

vc to double its initial value. 

i(t) ~ R = 5~ R 1/Cs ,(s), 
o S " - o  ! I - - ~ - - I  ! I I 

,00vC) 

C=0.1F  
11 
II 

20V 

100 

l 
Figure 8.35 Figure 8.36 

( 20 )T 

Solution 

First we obtain the transform circuit. The step voltage of amplitude 100 V 
resulting from the closing of the switch S transforms to 100/s (Table 8.1, 
transform pair number 3 with A - 100). The capacitor is initially charged to 
20 V so that there will be a source Vc(0)/s ( = 2 0 / s ) i n  series with the element 
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/// 1~ Cs (=  1/0.1s). The  t ransform circuit thus takes the form shown in Fig. 8.36. 

F rom this circuit we see that  

i(s) = [(100/s) - (20/s)]/[R + (1/Cs)] = 80/s[R + (1/Cs)] 

Now 

Vc(S) = i(s)(1/Cs) = 80/{s[R + (1/Cs)lCs} = 80/s(CRs + 1) 

Multiplying numera to r  and denomina to r  by 1/CR we get 

Vc(S) = 80(1/CR)/s[s + (1/CR)] 

Let  

(1/CR)/s[(s + 1/CR)] : [A/s] + [B/{s + (1/CR)}] 

Then  

1/CR - A[s + (1/CR)] + Bs =- (A + B)s + A /CR  

Equat ing  the coefficients of s we have that  A + B = 0 ~ A = - B .  Equa t ing  the 

coefficients of s o we have that  1/CR = A /CR  ~ A = 1 and B = - A  = - 1. 

Thus 

Vc(S) = 8011/s - 1//(s + 1/CR)] 

From Table 8.1 we see that  1Is is the t ransform of 1 and that  1/(s + 1/CR)is  
the t ransform of exp (- t /CR)(transform pair number  1 with a = 1/CR). In the 

t ime domain,  therefore  

Vc(t) - 8011 - exp (- t /CR)] = 8 0 1 1 -  exp ( - t / 0 . 5 ) ]  

When  Vc has reached 40 V (i.e. it is double its initial value) we have 

40 : 8011 - e x p ( - t / 0 . 5 ) l  

exp ( - 2 t )  = 0.5 

Therefore  

- 2 t = l n 0 . 5  and t = 0 . 3 4 5 s  

Example 8.14 

An inductor  of 250 IxH inductance is energized from a 1 kV d.c. supply via two 
thyristors connected  in series. The thyristors are identical except that  one of 

them has a delay at turn-on of a few microseconds longer than the other.  

Voltage sharing is assisted by placing an RC circuit in parallel  with each 

thyristor.  Obta in  an expression for the current  in the RC circuit connected  

across the 'slow' thyristor  after the other  one has turned on. 
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Solution 

Figure 8.37 

V:,kV( 

R C ? HI 
-Os~ 

Th~ 

R C 

Th2 

) L 

The circuit is shown in Fig. 8.37 and it should be noted that the thyristors Thl 
and Th2 may be considered to be simply switches which are either closed (when 
they are turned on) or open (before they are turned on). 

At the instant of closing the switch the current in the circuit is zero and the 
1 kV is shared equally between the capacitors. When thyristor Th I turns on it 
short circuits the RC circuit in parallel with it and the circuit will then be as 
shown in Fig. 8.38, the R and the C being those in parallel with the still open 

switch Th2. The transform circuit takes the form shown in Fig. 8.39. 

lkV( 

_ ~  R C 

:) L 

Figure 8.38 

. ~  R 1/Cs 
I I 1 

500 
s 

@ 

1000 (~ 
s ) I3 Ls 

Figure 8.39 

From the transform circuit we have that 

i(s) - [ ( lO00 / s ) -  (500/s)] / (R + 1/Cs + Ls) 
= 500/~(R + 1/C~ + L~) 
= 500/Ls 2 + Rs + 1 / c  
= (500/L)/[s 2 + (R/L)s  + 1/CL] 
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Completing the square of the denominator we have 

i(s) = (500/L)/[{s + (R/2L)} 2 + {(1/CL) - (R/2L)2}] 

Putting L = 250 txH, n / 2 L  = a, and {( lICE) - (R/2L)  2} = ~o 2, we have 

i(s) = 2/[(s + a) 2 + of] IXS 

Multiplying numerator and denominator by o~ we have 

i(s) = (2 /w ) {w / [ ( s  + a) 2 + 2 ] }  

From transform pair number 7 in Table 8.1 we see that w/[(s + a )  2 -~- 0) 2] is the 
transform of exp ( - a t ) s i n  o)t so that, as a function of time we have for the 
current, 

i(t) = (2/~o) exp ( - a t )  sin o)t 

This is of the form shown in Fig. 8.40 which is an exponentially decaying sine 
wave. It is said to be underdamped. 

o 

Figure 8.40 

This means that the current undergoes a period of oscillation before reaching 
its new required value (zero in this case). 

This result was obtained assuming that of is positive (i.e. (1//CL) > (R/2L)2). 
There are other possibilities (~o 2 could be negative or zero) leading to other 
results associated with overdamping and critical damping, respectively, in which 
the current reaches zero more or less rapidly and without oscillation. 

8.5 SELF-ASSESSMENT TEST 

1 Give two conditions which could lead to the transient operation of an 
electric circuit. 

2 Explain why transient conditions do not exist in purely resistive circuits. 

3 State the reason why there could be periods of transient operation in 
inductive circuits. 

4 Explain why there is a period of transient operation immediately after 
switching on a circuit containing capacitance. 



202 Transient analysis 

5 Define a step voltage. 

6 Give the symbol for and the unit of time constant. 

7 Give an expression for the time constant of an RL circuit. 

8 A coil has an inductance of 10 mH and a resistance of 5 1). If a step 
voltage of 10 V is applied to the coil, how long will it take for the current 
to reach its final steady state value? 

9 What ~,-, the initial rate of rise of the current in the coil in Question 8? 

10 What is the final steady state value of the current in the coil of Question 8? 

11 State the form of the voltage across the capacitor in a series RC circuit to 
which a step voltage is applied. 

12 State the form of the current in the circuit of Question 11. 

13 A series RL circuit is to be used as an integrator. Across which circuit 
element should the output voltage be taken? 

14 A series RC circuit is to be used as a differentiator. Across which circuit 
element should the output voltage be taken? 

15 What is the value of the time constant of an RC series circuit having 
R = 5 k~  and C = 0.1 ~F? 

16 A 10 ~F capacitor, charged to 100 V is discharged through a resistance of 
100 ~. How long will it take to become fully discharged. 

17 What will be the current in the circuit of Question 16 after a time equal to 
the time constant of the circuit? 

18 An RC circuit having a time constant of 10 ~zs is connected to a 100 V d.c. 
supply. If it is partially charged to 50 V and then immediately discharged 
through the resistance, how long will it take to become fully discharged? 

19 What is the advantage of using Laplace transforms in the analysis of the 
transient operation of electric circuits? 

20 What is a transform circuit? 

8.6 PROBLEMS 

1 A step voltage of amplitude 100 V is applied to a coil of inductance 10 H 
and resistance 10 1~. Determine (a) the initial rate of rise of current in the 
coil in ampere per second, (b) the value of the current after 0.1 s, (c) the 
circuit time constant, (d) the final steady state value of the current and (e) 
the time taken for the current to reach its steady state value. 
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2 The armature of a relay operates on a 200 V supply and is actuated when 
the current through its coil is 240 mA. The relay is required to close 4 ms 
after switching on the circuit. This time is also the time constant of the 
circuit. Calculate (a) the resistance and inductance of the coil and (b) the 
initial rate of rise of the current. 

3 A series circuit consists of a resistor R (= 10 1~) in series with a coil having 
an inductance of 2 H and a resistance of 10 1~. The circuit is fed from a 

100 V d.c. supply and after it has been on for several minutes a short 
circuit fault suddenly occurs across the resistor R. Determine (a) the 
current in the circuit 0.1 s after the occurrence of the fault and (b) the time 
taken for the current to reach its new steady state value. 

4 A resistor is connected in series with a 2 ~F capacitor across a 200 V d.c. 
supply. A neon lamp with a striking voltage of 120 V is connected across 
the capacitor. Calculate the value of the resistance required to make the 
lamp flash 5 s after switching the circuit on. 

5 An imperfect capacitor of 10 ~F capacitance is fully charged from a 200 V 
d.c. supply. After being disconnected from the supply the voltage across its 
plates falls to 100 V in 20 s. Calculate the leakage resistance of the 
capacitor. 

6 A 2 ~F capacitor is connected in series with a 2 kl~ resistance to a 100 V 
d.c. supply having an effective internal resistance of 2 kl-l. The supply is 
switched on for 10 ms and then replaced by a short circuit. Determine the 
total time for which the capacitor voltage is greater than 10 V. Sketch the 
waveform of the voltage across the capacitor and of the current through it. 

7 From the instant that the switch S in the circuit of Fig. 8.41 is closed, (a) 
show that the current through the capacitor is given by 
ic - ( V / R 1 )  exp [-R~ + Rz)t/CR1R2], (b) obtain numerical expressions for 
the voltage across the capacitor and the current supplied by the source. 

20v  
o "---~ S 

R2 ~ 20 k~ 

20k~ 

C 
0.1 pF T 

Figure 8.41 

8 The RL integrator circuit shown in Fig. 8.9 has R = 47fl and L = 120 mH. 
Obtain the output voltage (Vo) waveform when the input voltage V~, is: 
(a) a step function of amplitude 20 V; 
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(b) a single pulse of amplitude 20 V and width 5 ms; 
(c) a train of pulses of amplitude 20 V, width 5 ms and separation 20 ms; 

9 The RC differentiator circuit shown in Fig. 8.26 has R - 1.5 MI~ and 
C - 2 pF. Obtain the output voltage (Vo) waveform when the input voltage 
(Vin) is: 
(a) a step function of amplitude 15 V; 
(b) a single pulse of amplitude 15 V and width 5 p~s; 
(c) a train of pulses of amplitude 15 V, width 5 ~s and separation 20 ~s; 
(d) a train of pulses of amplitude 15 V, width 5 ~s and separation 5 ~s. 

10 A series circuit consists of a 50 1~ resistor, a 0.1 ~F capacitor and a 250 ~H 
inductor in series. With the capacitor initially uncharged, the circuit is 
connected to a 500 V d.c. supply. Obtain an expression for the current in 
the circuit as a function of time. 



9 Two-port networks 

9.1 INTRODUCTION 

Figure 9.1 
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A two-port network has four terminals as shown in Fig. 9.1 and is often called a 
four-terminal network. These are made up of: 

1 an input pair by which an input current (11 say) enters one terminal and 
leaves the other; and 

2 an output pair by which an output current (I2 say) enters one terminal and 
leaves the other. 

The input terminals constitute the input port and the output terminals 
constitute the output port. The conventional directions of the currents are as 
shown in the diagram. 

Some examples of two-port networks are: transistor circuits; amplifier 
circuits; filters; power transmission lines. 

For linear, passive networks a set of equations can be established which 
relate input and output quantities in terms of the network impedances or 
admittances. If the input and output currents and voltages (I~, I2, V~ and V2) are 
considered in pairs to be the independent variables, the others then being the 
dependent variables, there are six possible pairs or sets of equations. These will 
be discussed in turn. 

9.2 THE IMPEDANCE OR z-PARAMETERS 

Set 1" I~ and 12 are the independent variables. The dependent variables are then 
given by 
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V 1 -- ZllI1 + z1212 (9.1) 

V2 = Z21 I, + Z2212 ( 9 . 2 )  

In matrix form these may be written 

EVil  Zll z12] [11]  93, 
v: LZ:  Z:: /2 

The parameters for this set are called the impedance or z-parameters and they 
are defined as follows: 

�9 Zll is the input impedance (Zi) and is measured as  V1/I 1 with 12 = O: 

Zll--  (V1/I1)li2=o 

�9 z~2 is the forward transfer impedance (zf) and is measured as V~/I2 with 

I1 - O: 

Z12 = (Vl/V2)li,=o 
�9 Z21 is the reverse transfer impedance (Zr) and is measured a s  V2/I 1 with 

12 = O: 

Z21 ~ (V2/I,)112=o 
�9 Z22 is the output impedance (Zo) and is measured as  V2/I 2 with I~ = 0: 

z22- (V2/I2)11,=o 

(9.4) 

(9.5) 

(9.6) 

Figure 9.2 

I1 I2 +0 ~ < 0 

Z11~ [~ z22 
v, Z1212~ Z2~l~ 
-0 0 

Since these are all obtained with either the input terminals or the output 
terminals open circuited, they are called the open circuit impedance para- 
meters. They are measured in ohms. 

The circuit shown in Fig. 9.2 satisfies Equations (9.1) and (9.2) and is called 
the equivalent circuit for this set. 

(9.7) 
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Example 9.1 

D e t e r m i n e  the z -paramete rs  of the T-circuit shown in Fig. 9.3. 

Figure 9.3 

11 Za 
+o .~ !_ F ~ -  

(10+j0)D 

Vl 

- - - - - t  
(5+j0)D. 

Z2 I2 
l-- ~ O +  

(5+j0)D ['~ Z3 

t l~ + 12 
_ _  - - O  O - -  

V2 

Solution 

F r o m  Equa t ion  (9.4) z~ - V~/I~ with I2 = 0 and applying K V L  with I2 - 0 we 

have 

V1 = I lZ l  + I l l 3  = I1(Z1 + Z3) 

SO 

zal = V1/I1-  Zl  Jr- Z 3 

F r o m  Equa t ion  (9.6) z2~ - V2/I1 with 12 - 0 and with 12 = 0, 1/2 - 11Z3, so 

Z21- '-  V2/I1 = Z3 

F r o m  Equa t ion  (9.7) z22 - V2/I2 with 11 = 0 and applying K V L  with I1 = 0 we 

have 

V 2 - 1 2 z  2 -F 1 2 Z  3 --  1 2 ( z  2 -F Z 3 ) .  

There fo re  

z:~ = V i i 2  = Z:  + Z3 

F r o m  Equa t ion  (9.5) z12 - V1/I2 with I~ = 0 and with I~ = 0, V1 = 12 Z3, so 

z12 = Vii i2  = Z3 

Note  that  Za2 = Z21. 

Putt ing in the values for Z~, Z2 and Z3 f rom the d iagram we have 

Zll = Z1 + Z 3 -  10 + 5 = 15 f~ 

z22 = Z2 + Z3 = 5 + 5 = 101q 

Z 1 2 -  Z21 "- Z3  - 5 ~-~ 

In matr ix  form we have 

= [1: 1:] 
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9.3 THE ADMITTANCE OR y-PARAMETERS 

Set 2: If V~ and V2 are the independent variables then the dependent variables 
are given by: 

11 - y11V1 + y12V2 (9.8) 

I2 = yz1V~ + yzzV2 (9.9) 

In matrix form 

[,11: ry11 y12] iv11 
I2 LY21 Y22J V2 

The parameters for this set are called the admittance or y-parameters and they 

are defined as follows: 

�9 Yll  is the input admittance (Yi) and is measured a s  I1 /V  1 with V2 = 0: 

Yll = (I1/V1)[v2=o (9.11) 

�9 Y12 is the reverse transfer admittance (Yr) and is measured a s  I1 /V  2 with 

V1 = O: 

Y12-- (I1/V2)[Vl=O (9.12) 

�9 Y21 is the forward transfer admittance (yf) and is measured as I2/V~ with 

V2 = 0: 

y~, = ( I~ /V l ) lV~=o  

�9 Y22 is the output  admittance (Yo) and is measured as I2/V2 with V1 = 0: 

(9.13) 

Y22 = (I2/V2)lv,=o (9.14) 

Since these are obtained with the output or the input port short circuited, they 
are called the short circuit admittance parameters and are measured in siemens. 
They are commonly used in the analysis of field effect transistor (FET) 
circuits. 

The equivalent circuit for this set which satisfies Equations (9.8) and (9.9) is 
given in Fig. 9.4. 

+ O  

V1 

--O 

Yll y12V2 1 Y21V1 I 1 

I2 

Y22 V2 

O-- 

Figure 9.4 
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Example 9.2 

Determine the admittance parameters for the T-circuit shown in Fig. 9.3. 

Solution 

From Equation (9.11), y~ = I1/V~ with V2 - 0. Short circuiting the output port 
terminals makes V2 = 0 and then Z2 and Z3 are in parallel. Now 

V1- I,[Z, + {Z2Z3/(Z2 q- Z3)I] 

so that 

11 = V1 / [Z  1 q -{Z2Z3/ (Z2  q- Z3)}] 

Putting in the impedance values we have 

11-  V1/(10 + 2 .5)= V~/12.5 

Therefore 

Yll = I~/V1 = (1,/12.5)S 

From Equation (9.12), Y12 = I1/V2 with V1 = 0. Short circuiting the input 
terminals to make V~ = 0 places Z~ and Z3 in parallel. Now 

V 2 = &[Z2 q {Z1Z3/(Z1 -Jr- Z3)}] 

so that 

6 = V2/[Z2 -[- {Z1Z3/(Z1 -]- Z3)I] 

Putting in the impedance values we have 

/2 = V2/[5 + (50/15)] = V2//[(75 + 50)/15] = 15V2//125 

By current division 

11 = - I 2 [ Z 3 / ( Z 1  + Z3)] = -(15V2/125)(5/15)= -1/2/25 

SO 

Y12-- I,/V2 = ( - 1 / 2 5 ) S  

From Equation (9.13), Y 2 1 -  I2/V1 with V2 = 0. We have seen above that, 
with the output port short circuited to make V2 - 0, 11 = V1//12.5. By current 
division, 

12 = - I1 [Z3 / (22  + 23) ] = -(V1/12.5)(5/10)- (-V1/25) 

Therefore 

Y:I = I2/V1 = ( - 1 / 2 5 ) S .  

Note that Y12 = Y21- 
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Finally, from Equation (9.14), Y22 = I2/V2 with V~ = 0. We have seen that 
with V1 = O, 

12- 15V2/125 = 3V2/25 

so 

Y22 = I2 /Vz-  (3/25)S 

In matrix form we have 

[,111 ] 12 - 1 / 2 5  3/25J V2 

9.4 THE HYBRID OR h-PARAMETERS 

Set 3: If/1 and V 2 a r e  the independent variables then the dependent variables 
are given by: 

V1 = h1111 + h12V2 (9.15) 

12 --" h21I 1 + h22V 2 (9.16) 

In matrix form 

[ V 1 ] = [  hll hi2][ I1 ] (9.17) 

11 kh2a h22] V2 

The parameters of this set are called the hybrid or h-parameters and they are 
defined as follows: 

�9 h~l is the input impedance (hi) and is measured in ohms as V~/I1 with 
V2 = 0: 

hll = (gl/I1)lvz=o (9.18) 

�9 h21 is the forward current gain (hf) and is a dimensionless ratio of currents 
(I2/I~) with V2 = 0: 

h2~ = (I2/I~)lv~=o (9.19) 

�9 h12 is the reverse voltage gain (hr) and is a dimensionless ratio of voltages 
(Va/V2) with I~ = 0: 

h12 = (Va/V2)I,,=o (9.20) 

�9 hzziS the output admittance (ho) and is measured in siemens as I2/V2 with 
I 1 = 0  

h22 = (I2/V2)1,,=o (9.21) 

These parameters are used extensively in the small signal analysis of bipolar 
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transistors where an additional subscript 'e', 'b' or 'c' is used, depending upon 
the configuration (common emitter, common base or common collector, 
respectively). Thus we might have for the input impedance hi~ o r  hlb o r  hie .  

The Equations (9.15) and (9.16) are satisfied by the equivalent circuit shown 
in Fig. 9.5. 

Figure 9.5 

|1 

+ o----  ~ h11F ~ 
U 

h12V2 

- o  

~' h21ll h22 

O +  
L 

V2 

O--  

9.5 THE INVERSE HYBRID OR g-PARAMETERS 

Set 4: If V1 and I2 are the independent  variables then the dependent  variables 
are given by: 

I1 = gllV1 = g1212 

V2 = g21 V1 + g2212 

In matrix form 

(9.22) 

(9.23) 

[,, ]:  121 iv1 } 
V2 Lg21 g22 A 12 

The parameters  of this set are called the inverse hybrid or g-parameters  and are 
defined as follows: 

�9 g~a is the input admittance (gi) and is measured in siemens as I~/V1 with 

12 = O: 

gll = (I1/V1)[&=o (9.25) 

�9 g21 is the forward voltage gain (gf) and is a dimensionless ratio of voltages 

(Vz/V~) with 12 = 0: 

g21 = (Vz/V~)I,~=o (9.26) 

" g12 is the reverse current gain (g r )  and is a dimensionless ratio of currents 

(I~/I2) with V~ - 0: 

g12-  (I~/I2)lv,=o (9.27) 
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" g22 is the output impedance (go) and is measured in ohms as V2/12 with 
V 1 : O: 

g22- (V2/I2)lv,=o (9.28) 

Note that 

gll = 1/h~1 (9.29) 

g21 = 1/h21 (9.30) 

g12 = 1/h12 (9.31) 

g 2 2 -  1/h22 (9.32) 

For this reason the g-parameters are also known as the inverse h-parameters. 
Equations (9.22) and (9.23) are satisfied by the equivalent circuit of Fig. 9.6. 

Figure 9.6 

I1 
+o 

Vl 

- o  

gll 

I2 
< O 

1 
'-~ g22 

g1212 l (~ V2 
g21V1 

o 

Example 9.3 

Determine the h- and g-parameters for the T-circuit of Fig. 9.3. 

Solution 

From Equation (9.18), hl1 = Vx/[1 with V2 = 0. Short circuiting the output port 
terminals to make V2 = 0 places Z2 and Z3 in parallel and then 

I~ : V l / [ Z  1 - ~ - { Z 2 Z 3 / ( Z  2 -Jr- Z3) l l  

Therefore 

h,, - V i i i  1 = Z 1 n t- { Z 2 Z 3 / ( Z  2 Jr- Z3)} 

Putting in the impedance values we have 

h l l  = (10 + (5 x 5)/10) = 12.5 II 

From Equation (9.29) 

g~ = 1/hll = (1/12.5)S 

From Equation (9.19), h21 = h/I1 with V2 = 0. By current division 

6 - -  - I I [ Z 3 / ( Z 2  nt" Z3)] 
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Therefore 

h21-~. 12/1, = -Z3/(Z2 + Z3) 

Putting in the impedance values, 

h21 = - 5 /10  = -0.5 

From Equation (9.30) 

g21 = 1/h21 = - - 2  

From Equation (9.21), h22 - I2/V2 with I1 = 0. With 

I 1 = 0, I 2 -- V 2 / ( Z  2 + Z 3) 

SO 

h22 : 12/1/'2 : 1//(Z2 + Z3)S 

Putting in the impedance values 

h22 : 1/(5 + 5) : 0 . 1  S 

From Equation (9.32) 

g22 = 1 / h 2 2  = (Z2 + Z3) : (5 + 5) = 1 0  D, 

From Equation (9.20), h12 - -  V1/V 2 with 11 - -  0 .  Now with the input port open 
circuited to make 11 = 0 ,  V 1 = IeZ 3 and 12 = V2//(Z2 + Z3), 

V 1 : V 2 Z 3 / ( Z  2 -[-- Z3) 

It follows that 

h i  2 ---  Vl /V 2 - -  Z 3 / ( Z 2  + Z3) 

Putting in the impedance values we have 

hi2--- 5 / ( 5  "+" 5)  -- 5/10 = 0.5 

From Equation (9.31) 

g12 : 1//h12 = 1/0.5 = 2 

9.6 THE TRANSMISSION ORABCD-PARAMETERS 

Set 5: The fifth set, which leads to the so-called transmission or ABCD- 
parameters, has 1/2 and 12 as the independent variables and V~, I1 as the 
dependent variables. The output port current flows out of the positive terminal 
which is the opposite direction to the conventional direction considered in the 
previous four sets of equations. This is shown in Fig. 9.7. 

These equations are used extensively for the analysis of transmission systems 
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and are also particularly useful for the analysis of cascaded two-port networks, 
such as are frequently encountered in power systems. 

The dependent  variables are given by 

V 1 --AV2 + B12 (9.33) 

I1 = CV2 + DI2 (9.34) 

In matrix form 

The A B C D  matrix is called the transfer matrix of the network. The parameters  
for this set are measured by open circuit and short circuit tests on the output 
port and are defined as follows: 

�9 A is measured as V1/V2 with I2 - 0 and, being the ratio of two voltages, it is 

dimensionless: 

A = ( g l / g 2 ) l i 2 =  o (9.36) 

�9 B is measured as V1/I2 with V2 = 0 and, being a ratio of volts to amperes, 
has the dimensions of impedance: 

B = (V~/I2)l,z=o (9.37) 

�9 C is measured as I1/V2 with I2 = 0 and, being the ratio of amperes to volts, 
it has the dimensions of admittance" 

C = (I1/V2)112= o (9.38) 

�9 D is measured as I~/I2 with V2 = 0 and, being the ratio of two currents, it is 

dimensionless: 

D = (I~/I2)lv~=o (9.39) 

9.7 THE INVERSE TRANSMISSION PARAMETERS 

Set 6: If V~ and I~ are the independent  variables, then the dependent  variables 

are given by 
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V 2 = A ' V  1 + B ' I  1 (9.40) 

I2 = C'V~ + D'I~ (9.41) 

In matrix form we have 

A '  B '  

Ic 
A', B', C' and D'  are called the inverse transmission parameters  or the inverse 

ABCD-parameters  and they are measured  with the input port  either open 

circuited or short circuited. They are defined as follows" 

�9 A' is measured  as V2/V1 with I~ - 0 and is a dimensionless ratio of two 

voltages: 

A '  = (Vz /V1) I / ,=  o (9.43) 

�9 B' is measured  as V2/I1 with V~ = 0 and its unit is the volt per ampere.  It 

therefore has the dimensions of impedance:  

B' - (Vz/I1)lv,:o (9.44) 

�9 C' is measured  as I2/V~ with 11 = 0 and its unit is the ampere  per volt. It 

therefore has the dimensions of admittance: 

C' = ( I 2 / V l ) l l , =  0 

�9 D '  is measured as I2 / I t  wi th  V1 = 0 and is a dimensionless rat io of  two 
currents: 

(9.45) 

D '  = (12/I1)]v,= o (9.46) 

Example 9.4 

Determine  the ABCD-parameters  of the series impedance ne twork  shown in 

Fig. 9.8. 

I1 Z I2 
+ o  o-1- ,,....- | | r 

T 
- - 0  O-- 

Figure 9.8 

Solution 

To find A and C we open circuit the output  port  to make  12 = 0. Then V 1 - V 2 

and I~ = 12 - 0. F rom Equat ion  (9.36), A - Vt/V2 - 1. F rom Equa t ion  (9.38), 

c -  I,/V  - o. 
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To find B and D we short circuit the output port to make V2 = 0. Then 
V1 = IzZ and I~ = I2. From Equat ion (9.37), B = V~/I2 = Z. From Equat ion 

(9.39), D = I~/I2 = 1. 
We could also find the ABCD-parameter s  by using Kirchhoff's laws as 

follows. Applying KVL to the network and taking the clockwise direction to be 

positive, we see that V1 - IzZ - V2 = 0. Rearranging we get 

V 1 --" g 2 Jr- l I  2 (9.47) 

Comparing Equations (9.33) and (9.47) we see that A = 1 and that B = Z. 
Applying KCL to the circuit we see that 11 = 12, which may be written as 

11 = OV2 + 12 (9.48) 

Comparing Equations (9.34) and (9.48) we see that C = 0 and that D = 1. 

In matrix form 

V1 

Note that A = D. This is always the case for symmetrical two-port networks, 
that is networks for which the input and output ports are interchangeable. A 
two-port network which is not symmetrical is shown in Example 9.6. 

'Short' power transmission lines 

A power transmission line will have conductor resistance and inductance 
distributed along the length of the line and capacitance between conductors 
also distributed along the length of the line. A 'short '  line (less than about 
80 km in length) is one for which, for the purposes of analysis, the capacitance 
can be neglected and the resistance and inductance can be considered to be 
concentrated at the centre of the line without introducing great errors. The line 
may then be represented by the series impedance network of Fig. 9.8. 

Example 9.5 

A single-phase transmission line has an impedance Z = (0.22 + j0.36)11. (1) 
determine the ABCD-parameters  of this line, and (2) calculate the sending-end 
voltage required to produce 500 kVA at a voltage of 2 kV when operating at 
unity power factor. 

Solution 

The network is as shown in Fig. 9.8. From the matrix Equation (9.49) we see 
that A = D = 1; B = Z = (0.22 + j0.36) 11; C = 0. Taking the receiving-end 
voltage as the reference, 

V2 = (2000 + jO) V 
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The receiving-end current is given by 

I2 = 500 k V A / 2  kV = 250 A 

Because the receiving-end power factor is unity, I2 is in phase with V2 and so 

12 = (250 + j0) A 

From Equat ion (9.47) 

V 1 -"  V 2 "Jr- ZI: 

Therefore 

V1 = (2000 + j0) + (250 + j0)(0.22 + j0.36) 
= 2000 + 55 + j90 
= 2055 + j90 
= V'(20552 + 902)/_tan -a (90/2055) 
= 2057/_2.51 ~ V 

Example 9.6 

Determine the ABCD-parameters for the network shown in Fig. 9.9. 

I1 
+ o  

Vl 

- - 0  

Z 
1 I 

I2 
O +  

2 

O--  

Figure 9.9 

Solut ion 

With the output  port open circuited to make 1 2 -  0, I~ = V I Y  and V2 = V1. 

From Equat ion (9.36), A -  V1/V2- 1. From Equat ion (9.38), C -  I1/V2 = 
I 1 / V  1 -- y. 

With the output port short circuited to make V2 - 0, we see, using the current 
division technique, that 

I2-II[(1/Y)/{(1//Y) + Z}] 
= I~[(1/Y)/{(1 + ZY)/Y}] 
= 11/(1 + ZY) 

From Equat ion (9.39), D - 11/12, so 

D = I + Z Y  

From Equat ion (9.37), B = V1/I 2. Now 

I~ -  V~/[{(1/Y)(Z)/((1/Y)+ Z ) } ] -  VI[(1 + ZY) /Y] / (Z /Y)  = V I ( 1  + Z Y ) / Z  
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Therefore 

I , / (1  + Z Y ) =  V1/Z 

Also, we saw above that 12 

B = V, / I2  = Z 

In matrix form 

= I , / (1  + Z Y )  so that 12 = V~/Z.  Therefore 

[v,] [1 zj[ ] 
I~ Y I + Z Y  12 

Note that in this case A 4= D. This two-port network is not symmetrical because 
the input and output ports are not interchangeable. 

Example 9.7 

Obtain the A B C D - p a r a m e t e r s  for the network shown in Fig. 9.10. 

]1 

V1 

- 0 ~  

~ Y 

I2 
�9 ~ O +  

V2 

O -  

Figure 9.10 

Solution 

This is called a shunt admittance network. 

A = V1/VzII~=O._ With I2 - O, V1 - V2 so that A - 1. 
From Equation (9.38), C = I~/Vz],~=o. With I2 

V1 = V2. Therefore 

From Equation (9.36), 

= 0, 1 1 -  VIY- V z Y  since 

C -  I , / V 2 -  Y 

From Equation (9.39), D - l~/I21v~=o. With V2 - 0, 11 - -  I 2 since Y is short 
circuited, so that D -  1. As expected then for this symmetrical network, 

A = D .  

From Equation (9.37), B - V~/12lv~=o. With V2 - 0, V1 - 0 and so B = 0. 
In matrix form 
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9.8 CASCADED TWO-PORT NETWORKS 

+ O  vl 
- - O  

Figure 9.11 
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I O+ 

Two networks connected as shown in Fig. 9.11 are said to be cascaded. The 
output port of network 1 is the input port of network 2. The ABCD-parameters 
of the cascaded pair are obtained by the multiplication of those of the two 
constituent networks. Thus, if the transmission parameters of circuit 1 are A1, 
B~, C~ and D~, while those for network 2 are A2, B2, C2 and D2 then 

['V1] - [;i ;11] [;i ;221 I/g~ ]'~ I; ;] [V~] (9.52) 

where, by matrix multiplication, 

A = (A1A 2 + BIC2) 

B = (AIB 2 + BAD2) 

C = (C1A 2 -+- D1C2) 

D = (CIB 2 + O102) 

(9.53) 

(9.54) 

(9.55) 

(9.56) 

Example 9.8 

Obtain the ABCD-parameters for the network of Fig. 9.9. 

Solution 

The two-port network of Fig. 9.9 may be considered to be a cascaded pair 
comprising a shunt admittance followed by a series impedance as shown in 
Fig. 9.12. 

I1 Ilo I2i Z I2 
t ~ O +  + 0--------~------- ~ ..... 0 ~ I l 

t 
V1 

_o � 8 4  

~ Y 

............... 

o - - -  

V lo  

I O 

V2i 

,,O 

V2 

O- -  

Figure 9.12 
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We saw in Example 9.7 that for a shunt admittance A = 1, B = 0, C = Y and 
D = 1. Also, from Example 9.4 we have, for series impedance, A = 1, B = Z, 
C = 0 and D = 1. 

Using the matrix Equation (9.52), with A1 = 1, B~ = 0, C~ = Y, D1 = 1, 
A 2 = 1, B 2 = Z ,  C 2 -- 0 and O 2 = 1 w e  have 

V 1 1 Ill ] "- [Y ~1 [10 Z] [/V22]- [C ; 3  [/V22] 

From Equations (9.53)-(9.56) by matrix multiplication we have 

A = [(1 x 1) + (0 x 0)] = 1 
B - [ ( 1  x Z) + (0 x 1)] = Z 
C = [(Y x 1) + (1 x 0)] = Y 
D = [(Y x Z) + (1 x 1 ) ] -  1 + Z Y  

For the cascaded network, therefore, A = 1, B = Z, C = Y and D = 1 + ZY. 

These results agree with those obtained in Example 9.6. 

The ABCD-parameters of a 7r-network 

The rr- and the T-networks are commonly encountered in electric circuit 
theory, for example in filter circuits, attenuator sections and power transmission 
circuits. The 7r-network is essentially a delta network and a T-network is a star 
connection. As we saw in Chapter 3 it is possible to transform from one to the 
other using the delta-star transform or the star-delta transform. The more 
appropriate form for any given circuit application can thus be chosen. 

E x a m p l e  9.9 

Obtain the transmission parameters for the rr-network shown in Fig. 9.13. 

Figure 9.13 
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Solution 

This circuit is made up from three two-port networks connected in cascade as 
indicated in Fig. 9.14. 
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I1 +C ~ 0 0 [ 
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Figure 9.14 
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For sections 1 and 3, which are shunt admittances, A = 1, B = 0, C = Y and 
D = 1. For the series impedance section, A = 1, B - Z, C - 0 and D = 1. Thus 
for the rr-network 

[I~1] m~ [ ;  ~] [; 1] [ ;  ~;[/V22] 

Multiplying the first two matrices on the right-hand side of the equation we 
get 

-1 Z 1 
[ i V 1 ] = [ y  I + Z Y ] [ Y  ~1[~2] 

Finally, multiplying the remaining transfer matrices, we have 

Y + ( 1  + Z Y ) Y  

zl[  ] 
I + Z Y  12 

For the 7r-network, therefore, A = I + Z Y ,  B = Z ,  C = Y + ( I + Z Y ) Y  
= 2Y + Z Y  2, D = 1 + ZY. Again A = D, this being a symmetrical two-port 
network. 

Nominal-TT representation of 'medium length' power 
transmission lines 

In power transmission the ~r-circuit of Fig. 9.13 is referred to as a nominal-~r 
network. It is used to model a medium length transmission line (between 80 km 
and 200 km). The whole of the impedance of the line is assumed to be 
concentrated at the centre of the line and half the capacitive reactance is placed 
at either end of the line. Thus, if we replace Y by I//2, where Y is the total shunt 
admittance of the line, we obtain for the ABCD-parameters: 

A = D =  I + (ZY/2) ,  B =  Z, C =  Y +  (Zy2/4) 
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The ABCD-parameters of  a T-network 

T-networks arc commonly used for LC filters and for attenuation sections. 

Example 9.10 
Obtain the A B C D - p a r a m e t e r s  for the T-network shown in Fig. 9.15. 

11 

V1 

- - 0  

Z Z 
I I 

I2 
I - -~-o + 

v2 

O -  

Figure 9.15 

Solution 

This network may be considered to be made up of a series impedance network 
followed by a shunt admittance network and then another series impedance 
network all connected in cascade. We can then make use of the transfer 
matrices in Equations (9.49) and (9.51) to write down the matrix equation for 
this circuit: 

By multiplication of the first two transfer matrices we get 

V~ (I+ZY) (O+Z) 

Multiplying the remaining two transfer matrices we have 

IV,] = [(1+ ZY+ O) 
I1 (Y + O) (zY + 1) /2 

Finally 

I~ I + Z Y J  12 

The transmission parameters for this network are therefore 

A - D = I + Z Y ;  B = 2 Z  + Z2Y; C =  Y 
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Nominai-T representation of 'medium length' power 
transmission lines 

In power transmission lines this T-network is called a nominal-T network. Half 
of the line impedance is considered to be concentrated at each end of the line 
and the whole of the shunt admittance is placed at the centre of the line. 
Replacing the impedance Z by Z/2,  where Z is the total series impedance of the 
line, gives for the transmission parameters of a nominal-T network: 

A = D = I + ZY/2;  B -  z + zZY/4; C -  Y 

The ABCD-parameters of a single-phase, two-winding 
transformer 

The transformer is a very important electrical 'machine', used not only for 
voltage and current level changing but also for buffering and matching 
purposes. They are manufactured in an enormous range of sizes from a few VA 
in electronic circuits to more than 1000 MVA in power systems. 

Example 9.11 

Determine the ABCD-parameters  for the ideal two-winding transformer shown 
in Fig. 9.16. 

n:l I2 
O 

V2 

o 
N1 N2 

Figure 9.16 

Solution 

The ideal transformer shown has a transformation ratio n = N1/N 2. From 
transformer theory we have that V1/V2 = I2/I~ - n, so 

V I - n V 2  and 11=I2/n  

These relationships may be written 

V 1 = r /V 2 + 0 6 (9 .59)  

11 = 0V2 + (1/n)I2 (9.60) 

Comparing Equations (9.59) and (9.33) we see that A = n and B = 0. Compar- 
ing Equations (9.60) and (9.34) we see that C = 0 and D = 1In. In matrix 
form 
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V1 0 

[ I i 1 = [ ~  X,/nl[~ 2] (9.61) 

Example 9.12 

Obtain the ABCD-parameters for a practical transformer. 

Solution 

A practical transformer has resistance and leakage inductance associated with 
its windings and these are taken into account by lumped series impedances in 
series with each 'perfect' winding. For the purposes of analysis it is usual to 
refer the whole of this impedance to one side of the transformer. 

A real transformer also has losses due to hysteresis and eddy currents and 
these are taken into account using a shunt conductance. This, together with a 
shunt susceptance used to take account of the need for a magnetizing current, 
gives a shunt admittance Y. The equivalent circuit then takes the form shown in 
Fig. 9.17. 
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Figure 9.17 

The diagram shows that the practical transformer equivalent circuit may be 
considered to be made up of a series impedance cascaded with a shunt 
admittance and then a perfect transformer. Using the transfer matrices 
developed in Examples 9.4, 9.7, and 9.11 we have 

Multiplying the first two transfer matrices we obtain 

Finally, multiplying the remaining two transfer matrices we get 

11 Yn 1/n_ 
V2] (9.62) 
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9.9 CHARACTERISTIC IMPEDANCE (2'0) 

The characteristic impedance of a symmetrical two-port network is the 
impedance which, when connected to the output port, gives rise to an input 
impedance of the same value. This is illustrated in Fig. 9.18. 

11 [ I2I~V~ ~ 
Zin = Z~ l ! 2-port 

V1 network Zo 
o I v 

Figure 9.18 

Using the transmission parameters, 

V 1 - ' - A V 2  + B12 = AV2 + BV2//Zo 

and 

I 1 "- C V  2 + n I  2 -- C V  2 Jr- D V 2 / Z  o 

The input impedance is 

Zin = V 1 / I  1 -- (A V2 + B V2/Zo)/(CV2 + D V2/Zo) 

Multiplying throughout the numerator and the denominator of the right-hand 
side by Zo/V2 we obtain 

V 1 / I  1 = (AZo + B)/(CZo + D) 

By definition, this is equal to Zo 

Zo = (AZo + B)/(CZo + A) 

remembering that D = A for this symmetrical network. Thus 

CZo 2 + AZo = AZo + B 

SO 

CZo 2= B 

and 

Zo = ~ ( B /C)  (9.63) 

From Equations (9.33) and (9.34) we have, with the output port open circuited 
so that I2 = 0, 

V I = A V 2  and 11 = CV2 

The open circuit input impedance Zoc = (V1/11)1,~=o = (AV2)/(CV2), so 

Zor = A / C  (9.64) 
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With the output port short circuited so that V2 - 0, 

V I = B I 2  and 11=DI2  

The short circuit input impedance is Zsc = (V~/I~)Jv2=o = (BI2)/(DI2),  so 

Z s c -  B / D  (9.65) 

From Equations (9.64) and (9.65) we have that ZocZsc- A B / C D  and, for a 
symmetrical network, A = D, so 

ZocZsc = B//C 

Now from Equat ion (9.63), Zo - ~ / (B /C) ,  so 

Zo = V/(ZocZsc) (9.66) 

Example 9.13 

Determine  (1) the A B C D - p a r a m e t e r s  and (2) the characteristic impedance of 
the network shown in Fig. 9.19. 

I1 
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V1 Y 
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(25 + j0)~ 

j0.2S j0.2S i-1 

I2 

Y V2 

O 
Figure 9.19 

Solution 

From matrix Equat ion (9.57) we have for the zr-network: 

A = D = l + Z Y =  l + (25 • jO.2) = l + j5 

= V'(12 + 52)z_tan -~ (5//1) = 5.09/_78.69 ~ 
B = Z = 2 5 f l  
C = 2 Y  + Z Y  2 = j0.4 + (25)00.2) 2 = ( - 1  + j0.4) S 

This means that C is in the third quadrant  so that 

C = V'(12 + 0.4)2/[180 - tan -1 (0.4//1)] = 1.07/158.22 ~ S 

From Equat ion (9.63) 

Zo - ~/(B//C) = V/[25/(1.07/-158.22~ = 4 . 8 3 / - 1 5 8 . 2 2  ~ 1~ 

9.10 IMAGE IMPEDANCES 
Suppose that for a non-symmetr ical  two-port network, terminating the output 
port  with an impedance Z~2 results in an impedance looking into the input 
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terminals of ZI~, and terminating the input port with Z~I results in an impedance 
looking into the output terminals of Z~2. Then Z~I and Z~2 are said to be image 
impedances. Networks are often designed on an image impedance basis in 
order to take advantage of the maximum power transfer theorem. For a 
symmetrical two-port network ZI~ = Z12 and is the characteristic impedance of 
the network, Zo. 

9.11 INSERTION LOSS 
As we saw in Chapter 3, the maximum power transfer theorem tells us that 
maximum power is transferred from source to load when the impedance of the 
load is equal to the impedance of the source. When a network (an attenuator 
pad, for example) is inserted between a source and a load, as shown in Fig. 9.20, 
there will be a loss of power transfer due to the resulting mismatch, as well as 
that due to the loss in the inserted network itself. 

Figure 9.20 
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ZL=RL+ jXL 

The insertion loss is defined to be 

10 log (Pb//Pa) dB (9.67) 

where Pb is the power in the load before the network is inserted and Pa is the 
power in the load after the network is inserted. If the load resistance is RE, the 
power in the load is P - I2RL, so 

Pb// Pa = IbZRL// IaZRL - IbZ// Ia 2 

where Ib is the load current before the network is inserted and I~ is the load 
current after the network is inserted. It follows that the insertion loss is 
10 log (Ib2/Ia2), SO 

insertion loss - 20 log (Ib/la) dB (9.68) 

Example 9.14 

The network shown in Fig. 9.21 is inserted between the generator and the load 
resistor shown in Fig. 9.22. Determine the insertion loss. 
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1300f~ 
o I I o 

r~ 880t2 

Figure 9.21 

0 0 

75f~ ~] 

Figure 9.22 

75f~ 

, 

Solution 

The network is now as shown in Fig. 9.23. 

Figure 9.23 

75t21~ RG 

1300t2 
I2 

R1 75t2 
RL 

Before insertion we see from Fig. 9.22 that 

V2 (=Vb say)=  [75/(75 + 75)]V 1 - -0 .5V 1 

After insertion we see from Fig. 9.23 that V2 (= Va say) = I2RL. Now 

I2 = [ R 1 / ( R 2  -[- R L -[- R1)111 

But 

11 = V1/[RG + {RI(R2 + RI~)/(R~ + R2 + RI~)}] 
= V I ( R  1 + R 2 + RL)//[RG(R1 + R 2 + RL) + RI(R2 + RL)] 

SO 

I2 = [R~//(R2 + RL + R1)][VI(R1 + R2 + RL)//{RG(R1 + R2 + RL) + RI(R2 + RL)}] 
= RIV~//[RG(R~ + R2 + RL) + RI(R2 + RL)] 

and 

V a -  I2RL = RLR~V~//[RG(R~ + R2 + RL) + RI(R2 + RL)] 

Putting in the values we have 

V a - -  75 • 880V,/[75(880 + 1300 + 75) + 880(1300 + 75)1 
= 0.0479V1 

From Equation (9.68), the insertion loss is 20 log (Ib/la). This is equivalent to 



20 log (IbRu/IaRL) = 20 log (Vb/Va) 
Thus the insertion loss is 

20 log (0.5V1/O.O479V1) = 20.37 dB 
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9.12 PROPAGATION COEFFICIENT (y) 

This is defined as the natural logarithm of the ratio of input to output currents 
or voltages when the network is terminated in its characteristic impedance. 
Thus 

Y = In (11/12) (9.69) 

Also 

Y = In (V1/V2) (9.70) 

As well as there being a change in level between I1 and I2 (or between V1 and 
V2) there will in general be a change in phase between them, so that Y will be 
complex. In general, therefore, 

y = a + jfl (9.71) 

From Equations (9.69) and (9.70) we see that 

I /12 = e 

and 

V l / V  2 -- e h 

It follows that 

11/12 = e ~+J~= e~e j~= e~Z_/3 (9.72) 

Similarly 

V1/V2 = e~//3 (9.73) 

where 

a = In 111/121 nepers (= In IV1/Vzlnepers) (9.74) 

and is called the attenuation coefficient because it is responsible for the change 
in level between input and output quantities. 

/3 (measured in radians or degrees) is called the phase change coefficient 
because it gives the change in phase between the input and output quantities. 
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9.13 SELF-ASSESSMENT TEST 

1 Define a two-port network. 

2 Give two examples of a two-port network. 

3 Give another name for a two-port network. 

4 Why are the impedance parameters of a two-port network called the open 
circuit parameters? 

5 Which parameters of a two-port network are also known as the short 
circuit parameters? 

6 For what purpose are the h-parameters commonly used? 

7 What are the inverse h-parameters also known as? 

8 Give another name for the ABCD-parameters of a two-port network. 

9 Explain what is meant by a symmetrical two-port network. 

10 Which two of the ABCD-parameters are always equal in symmetrical two- 
port networks? 

11 Give an example of a symmetrical two-port network. 

12 Give an example of an unsymmetrical two-port network. 

13 Draw a diagram to represent two two-port networks connected in cascade. 

14 Explain what is meant by the characteristic impedance (Zo) of a two-port 
network. 

15 Give an expression for the characteristic impedance of a two-port network 
in terms of one or more of its ABCD-parameters. 

16 Give an expression for the characteristic impedance of a two-port network 
in terms of its open and short circuit impedances. 

17 Explain what is meant by 'image impedances'. 

18 Explain what is meant by the term 'insertion loss' as applied to two-port 
networks. 

19 Give an expression for the insertion loss of a two-port network in terms of 
load currents. 

20 Define the term 'propagation coefficient' (3~) as applied to two-port 
networks. 

21 In general the propagation coefficient is complex and is given by 
3' = c~ + j/3. What is the significance of c~ and/3? 
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9.14 PROBLEMS 
1 Viewed from the input port a four-terminal network consists of a series 

impedance of 300 II followed by a shunt admittance of (1/900) S. 
Determine (a) the z-parameters and (b) the y-parameters of the network. 

2 A two-port T-network has a series resistance of 300 lI followed by a shunt 
conductance of (1//900) S and then a series resistance of 600 lI. Determine 
(a) the z-parameters and (b) the y-parameters of the network. 

3 A transistor has the following h-parameters: hl~ = 1 kll; h~2 = 10-3; 
h21 = 100; h22 = 1 0  . 4  S. Using the equivalent circuit of Fig. 9.5 determine 
(a) the voltage gain (V2/V1) and (b) the current gain (I2/I~) when a load 
resistance of 1 klI is connected across the output terminals. 

4 Determine the g-parameters of the transistor of Problem 3. 

5 Each phase of a transmission line has a total series impedance of 95 /75  ~ lI 
and a shunt admittance of 1.04/90 ~ mS. Obtain the ABCD-parameters for 
the nominal-Tr representation of the line. 

6 A two-port T-network has series impedances Z~ = 2 / 6 0  ~ f~ and 
Z2 = 5/-70 ~ ~ and a shunt admittance of 0 .01/80 ~ S. Obtain the ABCD- 
parameters for the line. 

7 Five two-port networks consisting of a series resistance of 100 lI, a shunt 
conductance of (1/400) S, a series resistance of 200 lI, a shunt conductance 
of (1/400) S and a series resistance of 100 f~ are connected in cascade in 
that order. Obtain the ABCD-parameters of the cascaded network. 

8 A symmetrical-T four-terminal network has series resistances R~ and R2 
each of 400 1~ and a shunt branch of resistance 600 1~. Determine the 
characteristic impedance of the network. 

9 Show that for non-symmetrical two-port networks the image impedances 
are given by V/[(AB)/(CD)] and X/[(DB/CA)] where A, B, C and D are 
the transmission parameters. [Hint: for each expression use the same 
method as was used to obtain the expression Zo = X/(B/C), Equation 
(9.63).1 

10 If the resistor R 2 in Problem 8 is replaced with one of 600 ~ resistance, 
determine (a) the ABCD-parameters of the new network and (b) the 
image impedances Z~I and Z~2. 

11 An attenuator pad has series resistances each of 200 ~ and a shunt 
resistance of 800 ~ in a T-section. Calculate the insertion loss when it is 
inserted between a load resistor of 1 k~  and a 30 V source having an 
internal resistance of 1 k~. 

12 The network of Problem 8 is inserted between a source and a load. 
Determine the insertion loss if the resistance of the source and the load 
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13 Each series arm of a symmetrical low-pass filter consists of a pure inductor 
of 0.018 H and the shunt branch is a capacitor of 100 txF capacitance. 
Determine the characteristic impedance of the network when operating at 
(a) 1 kHz and (b) 8 kHz. 
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10.1 DUALS OF CIRCUIT ELEMENTS 

We have seen that in linear circuit theory there is an intimate relationship 
between voltage and current. Their relationship is expressed in terms of 
impedance or admittance by the following equations: 

V = I Z  (10.1) 

I = v r  (10.2) 

These equations ultimately give the same information and the operations 
involved in solving for V or I are the same. Each equation is said to be the dual 
of the other. The elements of the equations are similarly dual pairs so that 
voltage is the dual of current and impedance is the dual of admittance. The 
component parts of impedance are resistance and inductive (or capacitive) 
reactance whose duals are, respectively, conductance and capacitive (or induc- 
tive) susceptance. The dual of (R + jXL) is thus ( G -  jBc) and the dual of 
(R - j X c )  is (G + jBL). 

Given an equation, therefore, its dual can immediately be written down by 
replacing each one of its component parts by its dual. Table 10.1 shows the 
duals of the circuit elements. 

Table 10.1 
Quanti ty ,----, Dual  

Voltage Current 
Impedance Admittance 
Resistance Conductance 
Inductance Capacitance 

Example 10.1 

Obtain the dual of the expression for the energy stored in a capacitor of 
capacitance C across which is maintained a voltage V. 
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Solution 

The energy stored in the capacitor is given by W -  (CV2)/2. The dual of 
capacitance is inductance and the dual of voltage is current. Replacing the 
component parts of the above equation by their duals we get, for the required 
dual expression, that the energy W stored in an inductor of inductance L 
through which is flowing a current I is given by W - (LI2)//2. 

10.2 DUAL CIRCUITS 

The circuits described by Equations (10.1) and (10.2) are shown in Fig. 10.1(a) 
and (b), respectively. In Fig. 10.1(a) the voltage is the source or stimulus, and 
the current through the impedance is the circuit response, whereas in the circuit 
of Fig. 10.1(b) the current is the source or stimulus, and the voltage across the 
admittance is the circuit response. Notice that the two parts of the previous 
sentence are dual statements. 

Figure 10.1 
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Series and parallel circuits 

If we have a series circuit such as that shown in Fig. 10.2(a) for which 
V -  I(Z~ + Z2 § Z3 + Z4), the dual equation is obtained by replacing the 
elements of the equation by their duals so that we get 

I Zl Z2 Z3 Z4 
H H t - [  J--- 

vC) 

Figure 10.2 
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Y3 T 
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I = V(Y1 + Yz + Y3 + Y4) and the circuit described by this equation is shown in 
Fig. 10.2(b), which is thus the dual of that in Fig. 10.2(a). 

It follows that: 

�9 a parallel circuit is the dual of a series circuit; 

�9 ' impedances in series are added' and 'admittances in parallel are added' are 
dual statements; and 

�9 'when elements are in series, voltages are added' and 'when elements are in 
parallel currents are added' are dual statements. 

Kirchhofrs current law and Kirchhoff's voltage law 

From the circuits of Fig. 10.2 we see that the voltage V is the sum of the voltages 
across the impedances Z~, Z2, Z3 and Z4 (which is KVL), while the current I is 
the sum of the currents in }11, Y2, Y3 and Y4 (KCL). Thus Kirchhoff's current law 
is the dual of his voltage law. 

Nodal voltage and mesh current 

It follows from the previous paragraph that the dual of a closed path (a loop or 
mesh) is a node and that mesh current analysis and nodal voltage analysis are 
dual procedures. 

Thevenin's theorem and Norton's theorem 

t 
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Eo() 

Figure 10.3 

"Z o 
I 
I 

A 

 lZL ,so 
B 

Ysc YL 

(a) (b) 

I 
A 

 lvL 
IB 

The Thevenin equivalent circuit of Fig. 10.3(a) consists of an open circuit 
voltage Eo in series with an impedance Zo. The current through the load 
impedance ZL connected across the output terminals A and B is then calculated 
from the equation 

i ,  = Eo/(Zo + z , )  (10.3) 

The dual of a voltage source is a current source and the dual of a series 
impedance is a parallel admittance. The dual of the circuit of Fig. 10.3(a) is thus 
that of Fig. 10.3(b), which is the Norton equivalent circuit. This circuit consists 
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of a short circuit current in parallel with an admittance Ysc. The voltage across 
the load admittance YL, connected across the load terminals A and B, is then 
calculated from the equation 

VL = Isc/(Ysc + YL) (10.4) 

Notice the duality of Equations (10.3) and (10.4) and of the statements in the 
above two paragraphs. 

Open circuit and short circuit 

It can be seen from the consideration of Thevenin's and Norton's theorems that 
a short circuit is the dual of an open circuit. 

Example 10.2 

Obtain the duals of the circuits shown in Fig. 10.4. 
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Solution 

(a) The voltage source is replaced by a current source; the circuit consisting of 
a resistor R, an inductor L and a capacitor C in series is replaced by one 
consisting of a conductance G, a capacitor C and an inductor L in parallel. 
This is shown in Fig. 10.5(a). 

(b) The voltage source is replaced by a current source; the circuit consisting of 
a series combination of a resistor R and an inductor L in parallel with a 
capacitor C is replaced with one consisting of a parallel combination of a 
conductance G and a capacitor C in series with an inductor L. This is 
shown in Fig. 10.5(b). 
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(c) This circuit shows an ideal transformer whose secondary winding is open 
circuited and whose primary winding is fed from a voltage source. The 
dual circuit will have the primary winding fed from a current source and 
its secondary winding will be on short circuit. This is shown in Fig. 10.5(c). 
Notice that, whereas the ultimate disaster in the circuit of Fig. 10.4(c) 
would be a short circuited secondary winding leading to infinite current, 
the corresponding catastrophe for the transformer in the dual circuit of 
Fig. 10.5(c) would be an open circuited secondary winding leading to 
infinite voltage. 

A summary of the dual pairs associated with electric circuits is given in Table 
10.2. 

It must be emphasized that dual circuits are not equivalent circuits. Their 
usefulness lies in modelling of systems. For example, it is much easier to obtain 
a capacitor with a leakage resistance tending to infinity than it is to obtain an 
inductor with a resistance tending to zero. In modelling systems having 
inductors, therefore, dual circuits can be used to represent the 'real' system. 

Table 10.2 

Circuit s ta tement  Dua l  

Series 
Series impedances are added 
Open circuit 
Switch open 
Node 
KCL 
Thevenin's theorem 
Nodal voltage analysis 

Parallel 
Parallel admittances are added 
Short circuit 
Switch closed 
Loop/mesh 
KVL 
Norton's theorem 
Mesh current analysis 
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10.3 ANALOGUES 

If an equation describing the operation of a physical system is identical in form 
to one describing the operation of another physical system, then the corre- 
sponding quantities in each equation are said to be analogous. The equations 
themselves are also analogous. The form of the equations and the associated 
mathematical manipulation are the important consideration, not the physical 
similarity (or otherwise) between the systems. 

There are two major advantages of analogous systems. One is the saving in 
memory space resulting from the form of equations being identical in two or 
more systems. The second is that, when dealing with mechanical/electrical 
analogues, for example, it is possible to express the whole system in an 
integrated form mathematically. 

Electric, magnetic and conduction fields 

The field vectors of the electric field are related by the equation 

D = eE (10.5) 

where D is the electric flux density, E is the electric field strength and e is the 
permittivity of the medium of the field. 

Similarly, for the magnetic field we have 

B =/xH (10.6) 

where B is the magnetic flux density, H is the magnetic field strength and ~ is 
the permeability of the medium of the field. 

For the conduction field 

J : o-E (10.7) 

where J is the current density, E is the electric field strength and ~r is the 
conductivity of the medium of the field. 

We notice that Equations (10.5), (10.6) and (10.7) are identical in form and 
are said to be analogous. Similarly the corresponding quantities (D, B and J; E 
and H; e, ~ and ~r) in each of the equations are analogues. Any one of these 
equations could be obtained from one of the others by replacing each quantity 
of the second system by the corresponding analogue from the first. 

Example 10.3 

The energy stored in an electric field is given, in terms of the field vectors, by 
the equation W - D E / 2  joules per cubic metre of the field. By consideration of 
field analogies obtain an expression for the energy stored per cubic metre in a 
magnetic field. 
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Solution 

The magnetic field analogues of D and E are, respectively, B and H so that the 
analogous energy equation is W - BH//2 joules per cubic metre. 

Electric and magnetic circuits 

It is often convenient to use the analogies between electric and magnetic 
circuits when analysing the latter. For example, the series-parallel magnetic 
circuit shown in Fig. 10.6(a) is the analogue of the series-parallel electric circuit 
shown in Fig. 10.6(b). 

Figure 10.6 
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The resistance of an electrical conductor (copper, for example) is given by 
R - l /o'A where l is the length of the conductor, A is its cross-sectional area, 
and cr is the conductivity of the copper. The reluctance of a magnetic 
'conductor' (iron, for example) is given by S = l / ~ A  where l is the length of the 
iron path, A is its cross-sectional area and/x is the permeability of the iron. 
Resistance is a measure of how difficult it is for current to flow in an electric 
circuit and reluctance is a measure of how difficult it is for magnetic flux to 
'flow' in a magnetic circuit. Resistance and reluctance are analogues of one 
another. 

In the circuits of Fig. 10.6, the resistance R~ of the electric circuit is analogous 
to the reluctance S~ of the right-hand limb of the magnetic circuit. Similarly, 
resistors R2 and R are analogous to $2 and S (respectively, the reluctances of the 
left-hand limb and the centre limb of the magnetic circuit). The electromotive 
force (emf) E in the central branch of the electric circuit is analogous to the 
magnetomotive force (mmf) F ( - N I )  in the centre limb of the magnetic circuit. 
Finally, the currents I~, 12 and I are the electric circuit analogues of the fluxes (I)1, 
q~2 and q~, respectively, in the magnetic circuit. 

Applying KVL to the left-hand mesh gives 

E = IR + I2R2 (10.8) 

Applying KVL to the right-hand mesh gives 

E = IR + I1R1 (10.9) 
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Applying KVL to the outer loop gives 

11R1 = 12R2 (10.10) 

Equation (10.10) could of course been obtained from Equations (10.8) and 
(10.9) simply by equating their right-hand sides. 

Applying KCL to node X gives 

I = I~ + I2 (10.11) 

By analogy, the equations for the magnetic circuit may now be written down 
immediately. Thus, from Equation (10.8) we have 

F(=N/)  = q~S + q~2S2 (10.12) 

From Equation (10.9) we see that 

N I  = ~ S  + @~S~ (10.13) 

Equation (10.10) indicates that 

q~,S, = q~zS2 (10.14) 

Finally, by analogy with Equation (10.11), we have 

q~ = q~, + q~2 (10.15) 

Table 10.3 summarizes the analogies between the electric and magnetic fields. 

Table 10.3 

Electric Magnetic Conductive 

Electric flux, ~ Magnetic flux, �9 Electric current, I 
Field strength, E Field strength, H Field strength, E 
Flux density, D Flux density, B Current density, J 
Permittivity, e Permeability, ~ Conductivity, cr 

Reluctance, S Resistance, R 
mmf, F emf, E 

Electrical and mechanical systems 

Electric circuits are made up of energy sources, sinks and stores represented, 
respectively, by voltage or current sources, resistors and inductors or capaci- 
tors. Similarly, in mechanical systems there are sources of force, together with 
energy sinks (for example, dashpots) and energy stores (for example, springs or 
moving masses). There are analogous quantities in the two systems leading to 
analogous equations. There are summarized in Table 10.4. 

Since the form of the equations shown in the table is identical in both 
systems, their manipulation is likewise identical. 
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Mechanical Electrical analogue 

Force source, P Current source, I 
Velocity, v Voltage, V 
Viscous resistance, B Conductance, G 
Spring compliance, D Inductance, L 
Mass, M Capacitance, C 
P =  By I = G V  
v = DdP/dt V = LdI/dt  
P--  Md(~/dt I = CdV/dt 

10.4 SELF-ASSESSMENTTEST 

1 State the dual of voltage. 

2 Give the dual equation of V = IZ .  

3 Give the dual expression of (CV2) /2 .  

4 Give the dual of a circuit containing a resistor and a capacitor connected in 
parallel. 

5 State the dual of Norton's theorem. 

6 Give the magnetic field analogue of permittivity. 

7 State the conduction field analogue of magnetic flux density. 

8 What is the magnetic field analogue of electric current? 

9 Give the magnetic circuit equation which is analogous to E = IR.  

10 The expression for the capacitance C of a parallel plate capacitor having 
plate area A and separation d is C = A c i d ,  where e is the permittivity of 
the dielectric material. Use the method of field analogues to write down 
the expression for the conductance of the dielectric material. 

11 'Current cannot change instantaneously in an inductor'. What is the dual 
statement in relation to capacitors? 

12 Give the mechanical system analogue of electrical inductance. 

13 Give the electrical system analogue of the mechanical system equation 
P = B v  where P is the force source, B is the viscous resistance, and v is 
velocity. 

14 When a step voltage is applied to an RL circuit the current as a function of 
time is given by i = I[1 - exp ( - R t / L ) ] .  Give the dual equation in respect 
of a step voltage being applied to an RC circuit. 



Answers to self-assessment 
tests and problems 

Chapter  1 

Self-assessment test 

1. second; newton; kilogram. 2. coulomb; newton; volt. 3. [M L 2 T -2 A-l]. 4. [M T -2 A-l]. 
5. [M L T -3 A-l]. 6. (a) 30 x 10 -3 A; (b) 25 x 106 IxA; (c) 10 x 109 mW; (d) 25 x 10 -9 C; (e) 
150 x 10 -3 nF; (f) 60 x 10 -3 GW; (g) 150 x 10 -3 mJ; (h) 220 x 10 -3 kfZ; (i) 55 x 109 ml]; (j) 

100 x 10 -3 kN. 

Problems 

1. [L  -1 A]. 2. [M L T -2 A-2]. 3. [T A]. 4. [L-2T A]. 5. [M L T -3 A-1]. 6. True. 

7. [M -~ L -3 T 4 A2]. 8. a = 2; b = 1.9. False, W = (L 12)/2. 10. a = 2; b = - 1; c = - 1. 

11. a = 2; b = - 1 ;  c = -2 .  12. 0.145 MW. 

Chapter  2 

Self-assessment test 

8. (1) 3.33 It, (2) 30 ~ ,  (3) 15 It. 9. 0.15 It. 11. Between 198 It and 242 12. 19. 16 IxH. 

20. 82 ~tH. 

Problems 

1. 0.5 fz. 2. 641]. 3. 4.041]. 4. 20 v .  5. 5 A. 6. 1 It. 7. 59.7 ~ 8. red, red, red, silver. 

9. Between 278 It  and 338 It. 10. 4.29 txF, 7.14 ~F, 8.57 ~xF. 11. 125 ~H, 80 ~H, 100 IxH. 

12. 405 IxH, 5 txH. 13. 0.919. 14. 9 A. 15. 2 mJ. 16. 1.44 kW. 

Chapter  3 

Self-assessment test 

9. 4 ~.  10. 30 fz. 11. 100 It, 900 It. 12. 110 It, 0 It, 0 It. 

Problems 

1. 1.49 A. 2. 3.64 A. 3. Eo = 30 V, Ro = 2 1),. 4. 720 mA (maximum),  11.5 mA (minimum).  

5. (a) 440 mA, (b) 9.87 mA, (c) 17.5 1]. 6. I1 = 224 mA, I2 = 188 mA, 13 = 8 mA, 
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14 = 44 mA. 7. (a) 6012, (b) 8 A, 4 A, 4 A. 8. 0.332 fL 66.4 fL 0.664 ~. 9. (a) 2 f~, (b) 
112.5 W. 10. (a) 1.4 V, 3.9 12; (b) 1.28 V. 11. (a) 0.456 A flowing from A to B, (b) 11.5 12 in 
parallel with R, (c) 2.29 W. 12. 3.79 mA. 

Chapter 4 

Self-assessment test 

2. Hz. 3 . f  = 1/T. 4. 25.5. 50 Hz. 6. 90 ~ 7. 100 V. 8. 1.11.9. In phase. 10. 150.8 12. 
11. 31.83 k12. 12. Ohm. 13. 63.43 ~ 14. 28.28 12. 15. (a) 22.36 12, (b) 20 12. 17. j. 18. Third. 
19. 18/_-56.3 ~ 20. 21.65 + j12.5.21. 5/_53.13 ~ 22. (5 + j6) 12. 23. (0.1 + j0.04) S. 24. 
S = P + jQ. 25. (a) 160 VA, (b) 125 W, (c) 100 Var, (d) 0.832 leading, (e) (25 - j20) V. 

Problems 

1. v = 250 sin (314t + 53.2~ i = 5 sin (314t + 23.6~ -150 V; -4.58 A; 29.6 ~ current 
lagging. 2. 122 V leading Vl by 2.2 ~ 3. (a) 5 12, 5 f~, 7.07 12; 5 ~1, 10 12, 11.2 12.4. (a) 11.1 A, 
(b) 0.555 lagging. 5. (a) 2.47 A, (b) 123.5 V, (c) 157.3 V. 6. (a) 7.98 Hz, (b) 433 12.7. (a) (i) 
2.48 A, (ii) 124 V, 158 V, (iii) 0.618 leading; (b) 36.7 ~xF; (c) 110 IxF. 8. (a) 2 A, 1.57 A; (b) 
2.54 A; (c) 78.8 12; (d) 38 ~ leading. 9. (a) (i) 13.2 A, (ii) 2.62 kW, (iii) 0.991 lagging; (b) (i) 
31.5 A, (ii) 5.9 kW, (iii) 0.937 lagging. 10. (a) 0.118 S, 0.113 S, 0.164 S; (b) 32.8 A; (c) 
4.72 kW. 11. (a) 13.1 A, (b) 0.953 leading. 12. (a) 23.6 A, (b) 5.1 kW. 

Chapter 5 

Self-assessment test 

7. ABC. 9. EMsin (tot - 240~ 11. 25 A. 12. 30 ~ 13. 17.32 A. 14. 12.65 kW. 15. V'3 VLIL. 
16. 28 kVar. 17. 340 W. 18. W1 = VAclA COS (angle between VAC and IA); 
W2 = VBclB COS (angle between VBC and IB). 19. COS {tan-l[V'3(P1 - P2)/(Pa + P2)]}. 20. (a) 
190 W, (b) 103.92 W, (c) 216.56 W, (d) 0.877. 

Problems 

1. (a) 32.44 A, (b) 8.99 kW. 2. (a) 34.6 A, (b) 18.24 kW, 3. (2.287 - j10.79) kVA. 4. (a) 
30 kW, (b) 0.33, (c) 231 A. 5. 0.866. 6. (a) 400 kW, (b) 0.756, (c) 152 A, (d) 360 kW. 

Chapter 6 

Self-assessment test 

1. toL = 1/toC. 2. 1/27rk/(LC). 3. Unity. 4. 250 rad s -1. 5. 2 12.6. Because the current is a 
maximum at resonance. 8. Q is dimensionless. 9. By reducing the resistance in the circuit. 
12. Hz. 14. P1 is 10 log10 (P1/P2) dB above P2. 16. 1/2~/(LC). 17. L/CR. 18. It increases. 
19. A minimum. 20. to0/Q. 

Problems 

1. 4 lq, 504 mH. 2. (a) 40 Hz, (b) 20 A, (c) 5 kV. 3. (a) 20.3 IxF, (b) 3.925 kV, 100 V, (c) 39.3. 
4. (a) 22.5 kHz, (b) 17.6, (c) 1.28 kHz. 5. 0.233; -12.6 dB. 6. (a) 1/[1 + 1 jtoCR], (b) -40,  
-20,  -3 ;  Comment: 1000 rad s -a is a half-power frequency. (c) Add a series inductance, 
the output still being taken across the resistor. 7. (a) 38 I~F, (b) 60.8 W, (c) 3.93 (11.89 dB). 
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8. (a) 38.5 Hz, (b) 50.23 Hz, (c) 1 A, 0.1 A. 9. (a) 15.9 kHz, (b) 20, (c) 5 kHz, (d) 13.4 kHz, 
18.4 kHz. 10. (a) 33.7 ~zF, (b) 78 ~xF. 11. (a) 12.8 kl~, (b) 6.4 kl'~, (c) 0.127 p,F, (d) 223, 
2.8 kHz. 12. (a) 50 kHz, (b) 7.95 kfl, (c) 12.7 fl. 13. (a) 2.8 nF, (b) 7.14 kfl, (c) 37.7, (d) 
41.2 mA. 

Chapter 7 

Self-assessment test 

3. [1 7 9 81]. 4. a34. 5o Yes. 6. No. 

Problems 

, ,a, [: ,c, [o 6 ,c, 6 ] [ 1  31 
-12  ,(d) -11 -15  

3. (a) 2 x + 5 y = 2 7  (b) x - y + 5 z = 6  
x + 3 y =  16 x + y + z  = 0  

- x  - 3z = 1 

4"4"5"25"6"5"178 ~l =15"7"(-1)z+12 6 = -2" $" 3"64 A" 9. 0"94 A'10. x'2 4 

11. -20.6 mA. 12. (a) 0 A, 2 A, 4 A, (b) 52 W. 13. 13.9 A 

Chapter 8 

Self-assessment test 

6. ~-, second. 7. L/R. 8. 10 ms. 9. 103 A s -1. 10. 2 A. 11. Exponential rise. 12. Exponential 
decay. 13. The resistor. 14. The resistor. 15. 500 pos. 16. 5 ms. 17. 0.362 A. 18. 50 txs. 

Problems 

L (a) 10 A s -1, (b) 0.948 A, (c) 1 s, (d) 10 A, (e) 5 s. 2. (a) 526.6 f~, 2.11 H; (b) 94.97 As -1. 
3. (a) 6.97 A; (b) 1 s. 4. 2.72 MI'I. 5. 2.89 MI'I. 6. 17 ms. 7. (b) Vc = 1011 - exp (-1000t)], 
i = 0.511 + exp (-1000t). 8. (a) An exponential growth reaching 20 V after 5z 
(z = 2.55 ms); (b) an exponential growth reaching 17.2 V after 5 ms and subsequently 
decaying exponentially to zero after a further 12.75 ms; (c) as for (b) but repeating 7.25 ms 
after becoming zero. 9. (a) An exponential decay starting at 15 V and falling to zero in 
15 I~s; (b) an exponential decay starting at 15 V and falling to 2.8 V after 5 ~s at which time 
the pulse is removed, then instantaneously reversing to -12.2 V and rising exponentially to 
reach zero after a further 15 txs; (c) as for (b) but repeating 5 ~s after becoming zero; (d) 
an exponential decay starting at 15 V and falling to 2.8 V after 5 I~s, then an instantaneous 
change to -12.2 V and an exponential rise towards zero reaching -2.3 V after a further 
5 Ixs; another instantaneous change to + 12.7 V, followed by an exponential decay to 2.39 V 
after a further 5 ~s. This continues with each successive positive voltage becoming smaller 
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and each successive negative voltage becoming numerically larger. 
10. i(t) = (2/to) exp ( -a t )  sin tot where a = r/EL = 155 s and 

to = ~/[(1/CL) - (R/EL) E] = 1.73 • 105 rad s -1. This is an exptgnentially decaying sine wave 
and is underdamped.  

Chapter 9 

S e l f - a s s e s s m e n t  test 

3. A four-terminal  network.  4. Because they are measured  with ei ther the input or the 

output  port  on open circuit. 5. The admit tance (y) parameters .  6. For  the analysis of 

transistor circuits. 7. g-parameters .  8. Transmission parameters .  9. The input and output  

ports may be interchanged without effect. 10. A and D. 15. V/(B/C). 16. V'(ZocZsc). 

19. 20 lOgl0 (Ib/Ia) dB where Ib is the  load current  before insertion and Ia is the load current 
after insertion. 

P r o b l e m s  

1. (a) Zll = 1200 •, z12 = ZE1 = z22 = 900 •; (b) Yll = (1/300) S, Y12 = Y21  = ( - 1 / 3 0 0 )  S, 

Y22 = (4/900) S. 2. (a) Zll = 1200 II, z12 = zE1 = 900 12, z22 = 150012, (b) Yl1 - -  (5/3300) S, 

Y12 = Y21 = ( - 1 / 1 1 0 0 )  S, Y22 = (4/3300) S. 3. (a) - 8 3 ,  (b) - 9 1 . 4 .  gll "-" 1 0 - 3  S ,  g l 2  - -  1 0 3 ,  

gEl - -  10-2, g22 "-" 10 k~"~. 5. A = D = 0 .95 /0 .78  ~ B = 95/__75 ~ fl, C = 1.01/_90.4 ~ S. 6. 

A = 0.986/__0.78 ~ B = 7.06/-66.7 ~ f~, C = 0.01/-80 ~ S, D = 0.957/-1.5 ~ 7. Z = D = 17/8, 

B = (4500/8) 12, C = (5/800) S. 8. 775 fl. 10. (a) Z = 5/3, B = 1600 12, C = (1/600) S, 

D = 2; (b) Zll = 895 12; Z12 = 1072 fl. 11. - 6 . 4  dB. 12. (a) 13 dB; (b) 9.5 dB. 13. (a) 580 12; 
(b) j684 12. 

Chapter 10 

S e l f - a s s e s s m e n t  test 

1. Current.  2. I = VY. 3. (LI2)/2.4. A resistor and an inductor  in series. 5. Thevenin 's  

Theorem.  6. Permeabili ty.  7. Current  density. 8. Magnetic flux. 9. F(=NI) = S. 
IO. G = A tr/d. 11. 'Vol tage cannot  change instantaneously in a capacitor ' .  12. Compliance.  
13. I = GV. 14. Vc = V[1 - exp ( - t / c g ) ] .  
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ABCD parameters 213 
ofa ~-network 220 
of a T-network 222 

a.c. circuits 
purely capacitive 75 
purely inductive 73 
purely resistive 72 
parallel circuits 91 
series circuits 77 
series-parallel circuits 95 
single phase 72 
three phase circuits 107 

admittance 92 
parameters 208 
triangle 92 

alternating quantity 66 
average value 71 
instantaneous value 67 
maximum value 67 
peak value 67 
root mean square (rms) value 
sinusoidal a.c. 67 

ampere 1 
analogue 238 
Argand diagram 83 
attenuation coefficient 229 

balanced 3-phase system 1.09 
bandwidth 1.30, 135 
branch 41 
bridged-T circuit 58 

capacitance 24 
of parallel plates 25 
of concentric cylinders 25 
of parallel cylinders 26 

capacitors 25 

70 

charging of 181 
discharging of 184 
energy stored in 35 
in parallel 27 
in series 26 

characteristic impedance 225 
charge 10 
eirCuit element 11 

active 11 
passive 11 

coefficient of coupling 31 
complex notation 82 

application to a.c. circuit analysis 
89 

complex quantity 
addition and subtraction of 86 
multiplication and division of 88 

conductance 15 
conductivity 15 
coulomb 10 
coupled circuits 30 
Cramer's Rule 146 
current 12 

division 20 
source 12 

cycle 66 

damping 
critically damped 201 
overdamped 201 
underdamped 201 

dB notation 131 
decibel 131 
delta connection 56, 114 
delta star transformation 56 
determinant 143 
dielectric 25 



differentiator 
RL 179 
RC 189 

dimensional analysis 4 
dimensions 1 
discharging a capacitor 184 
dot notation 31 
dual circuit 234 

duals 230 
of circuit elements 233 

dynamic impedance 134 

efficiency 119 
electric circuit 11 
electric current 1, 12 
electric field 25 
electricity 10 
electromagnetic induction 28 
electromotive force (emf) 12 
electron 10 
energy 3, 11 
energy source 11 
equivalent circuit 11 

Norton 52 
of transmission lines 216, 221,223 
Thevenin 48 

farad 25 
Faraday's Law 28 
field 25 

electric 25 
magnetic 28 
vectors 25, 28 

filter 129 
force 3 
form factor 71 
frequency 66 

angular 68 
resonant 124 

g-parameters 211 

gain diagram 131 

h-parameters 21.0 
half power frequency 
henry 29 
hertz 66 

130 

Index 247 

imagine impedances 226 

imaginary axis 84 

impedance 78 
characteristic 225 

dynamic 134 
image 226 

of RC circuit 79 

of RL circuit 78 

of RLC circuit 81 

parameters 205 

triangle 78 

inductance 28 

coefficient of coupling 31 

energy stored in 35 

in series aiding 32 

in series opposing 33 

mutual 30 

non-linear 29 

self 29 

insertion loss 227 

integrator 

RL 178 

RC 186 

inverse transmission parameters 

inverse hybrid parameters 211 

214 

j-notation 83 

Kelvin 2 
kilogram 1 
Kirchhoff's Laws 40 

Current Law 18, 42 
Voltage Law 16, 42 

lag 68 
Laplace Transform 192 

application to transient analysis 
of an exponential function 193 

of a step function 193 

of the derivative of a function 

table of 194 

transform circuits 194 

lead 68 

length 1 

lumped parameters 34 

194 

193 
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mass 1 
magnetic field 28 
matrix 141 

addition and subtraction of 142 
cofactor of an element of 145 
column 142 
determinant of 143 
element of 141 
minor of an element of 144 
multiplication of 143 
row 142 

Maximum Power Transfer Theorem 54 
mesh 41 

currcnt analysis 158-167 
metre 1 
mutual inductance 30 

network 11 
neutron 10 
nodal voltage analysis 
node 40 
non-linear elements 

inductors 29 
resistors 24 

Norton's Theorem 52 

147-157 

ohm 14 
ohmic material 14 
Ohm's Law 13 
open circuit 41 

partial fractions 196 
pass band 130 
passive element 11 
period 66 
periodic time 66 
permeability 28 
permittivity 25 
phase change coefficient 229 
phase 

angle 68 
diagram 131 
difference 68 
sequence 1.08 

phasor 70 
diagram 70 

phasorial representation of sinusoidal 
quantities 69 

n-network 220 
polar coordinates 85 
potential difference 3, 11 
power 3, 36 

apparent 100 
components 100 
dissipated in circuit elements 36 
factor 101 
in balanced three-phase circuits 
in single phase circuits 97 
measurement 117 
reactive 100 
real 100 

Principle of Superposition 45 
propagation coefficient 229 
proton 10 
pulse 178 

train 187 

Q-factor 128 
quadrature 84 
quantity 1 

reactance 
capacitive 76 
inductive 74 

rectangular coordinates 85 
resistance 13 

dynamic 134 
effect of temperature 22 
internal 22 
non-linear 24 

resistors 14 
colour code for 23 
in parallel 18 
in series 16 
non-linear 24 
power dissipated in 36 

resistivity 15 
resonance 123 

parallel 133 
series 123 

resonant frequency 124 
root mean square (rms) 70 
second 1 
short circuit 41 
single phase 72 

115 
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single phase (cont.) 
a.c. quantities 72 

source 
current 12 
voltage 12 

star connection 56, 111 
star-delta transformation 59 

steady state 72 
step function 172 
supermesh 164 
supernode 156 
susceptance 92 
Syst~me internationale d'unites (SI) 1 

T-network 222 

practical 224 
transients 

double energy 172 
in RC circuits 181 
in RL circuits 172 
in RLC circuits 195, 199 
single energy 172 

transmission parameters 213 
lines 216, 221,223 

two port networks 205 
in cascade 219 

two wattmeter method 117 

units 1 
multiples and submultiples of 6 

temperature coefficient of resistance 22 unit step function 193 
Thevenin's Theorem 48 
three phase 107 

balanced three-phase systems 109 
6-wire connection 110 
4-wire connection 110 
3-wire connection 111 

time 1 
time constant 

of an RL circuit 174 
of an RC network 182 

transform 
star-delta 59 
delta-star 56 
Laplace 192 

transformer 68 
ideal 223 

vector 
row 142 
column 142 

volt 12 
voltage 11 

source 12 
division 17 

Wattmeter 117 
Waveform 66 

y-parameters 208 

z-parameters 205 
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